Malware Detection in Android by
Network Traffic Analysis

Mehedee Zaman®, Tazrian SiddiquiT, Mohammad Rakib Amint and Md. Shohrab Hossain®
Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh
Email: *devmhd@ gmail.com, frian.7590@ gmail.com, ¥md.rakib.amin @ gmail.com, § mshohrabhossain @cse.buet.ac.bd

Abstract—A common behavior of mobile malware is trans-
ferring sensitive information of the cell phone user to malicious
remote servers. In this paper, we describe and demonstrate in full
detail, a method for detecting malware based on this behavior.
For this, we first create an App-URL table that logs all attempts
made by all applications to communicate with remote servers.
Each entry in this log preserves the application id and the URI
that the application contacted. From this log, with the help of
a reliable and comprehensive domain blacklist, we can detect
rogue applications that communicate with malicious domains.
We further propose a behavioral analysis method using syscall
tracing. Our work can be integrated with be behavioral analysis
to build an intelligent malware detection model.

Keywords—Android, malware detection, netstat, pcap, ADB,
Busybox

I. INTRODUCTION

Smart phones and tablets are the most popular and widely
used personal electronics devices today and roughly 70%
of these devices run Android [1] operating system. Due
to Android’s vast user base, open nature, and relatively
less restrictions on application distribution system, it has
always been an attractive platform for malware. According
to a recent report published jointly by Kaspersky Labs and
INTERPOL [1], 20% of devices that uses their software were
attacked at least once by malware.

Malware is a program which disrupts computer operation,
gather sensitive personal and financial information, or gain
access to private systems without user’s consent. With the
ever increasing use of mobile devices, mobile malware pose
significant threats for users, because their mobile devices store
contacts, bank account numbers, credit / debit numbers, private
photos, messages and a lot of other sensitive information that
can be leaked.

Given the recent tremendous growth of Android malware,
there is a pressing need for effective malware detection
methods. Existing detection methods can be classified into
two major categories: static (code analysis) and dynamic
(runtime/behavioral analysis). The sneakiest malware are
almost impossible to detect using static analysis, because
they often obfuscate the malicious code using random keys.
Some malware download the malicious code at runtime and
remove it after execution [2]. In these cases, a code analysis

978-1-4799-8126-7/15/$31.00 (©2015 IEEE

for known malware signature cannot detect the malware.

These exists a few static and dynamic malware detection
methods in the literature. Chandramohan et al. [3] has given
a high-level overview of various detection methods. Zhou et
al. [2] collected, classified and published a large collection of
1260 Android malware. We used malware samples from their
collection to evaluate our detection method. Isohara et al. [4]
demonstrated a system-call logging based method.

However, to the best of our knowledge, there exists
no work that demonstrates network traffic-based malware
detection method in details.

The objective of this paper is to demonstrate a detection
method based on network traffic analysis. The method we
described will be effective against malware that communicates
with known malicious remote servers.

Our network traffic analysis is based on logging the URLs
of all remote locations that are contacted by applications for a
specific period of time. Given, we have a database of known
malicious domains; the applications that contact any of those
malicious domains can be flagged as malware.

We described our detection method in a detailed step-by-
step manner, mentioning all the necessary tools and techniques
used. Also, we briefly explained the purpose behind each
step. This paper can be used as a technical guideline by
researchers, who are trying to develop network traffic-based
malware detection applications.

The rest of the paper is organized as follows. In Section
II, the main strategy for malware detection is explained. The
details of the steps followed for malware detection is presented
in Section III. Section IV gives an overview of our work in
progress and the direction we are heading towards. Finally,
Section V has the concluding remarks.

II. DETECTION STRATEGY

We divided the malware detection procedure in two steps:

At first, we created log of URLs that are contacted by
applications for a specific period of time. Then we tried to
match each entry (URL) of the log with a list of known
malicious domains. If a match is found, the application that
contacted the malicious domain is a malware itself or has been
affected by one.

A. Creating the App-URL table

App-URL table is a history/log of all attempts made by
all applications to communicate with remote servers over
HTTP. The table consists of (url, app) entries. Each HTTP
request maps to a single entry, where url is the URL which
is contacted, and app is the application that originated the
HTTP request.

This process is further subdivided into four tasks:

1) Packet dumping: We have recorded all incoming and
outgoing network packets to/from the android device for
specific duration of time. This creates a packet dump file that
contains information of which port number (of the mobile
device) is accessing which URL.

2) Netstat Logging: To relate port numbers with
applications, we periodically executed netstat [S] command
throughout the duration of packet dumping and saved the
outputs. Netstat gives information of which port number
is being used by which application when the command is
executed.

3) Extracting necessary information from packet dump:
We do not take all packets into consideration. We are only
interested in HTTP packets (and only requests, not responses).
So we have filtered out all other packets from the packet
dump we generated at the first step. We took only three fields
from each packet: time, originating port and full request URI.
This gives a time-sequenced log of port numbers and URIs
that a port tried to connect to.

4) Aggregating packet dump and netstat logs: We have
so far obtained two separate mappings: application vs.
port number from netstat logs, and port number vs. URL
from packet dump. We aggregate these two maps to create
a time-sequenced log of applications and the URLs each
application tried to contact (The App-URL table).

B. Matching the URLs with Domain-blacklists

We search the URLs in the App-URL table for known
malicious domains. If an application tries to connect to a
rogue domain (URL), we flag it as a malware. We can also
enrich our blacklist by adding other domains contacted by a
flagged application.

These steps are discussed in detail in the following section.

III. DETAILS OF MALWARE DETECTION STEPS

Our first step is to create an App-URL table. In this
table, each row of the table indicates an attempt to make an
HTTP connection by any application. We store the time, the
application’s unique identifier (package name), and the URL
which was contacted.

A. Creating the App-URL table

1) Packet dumping: We need to use a software for
recording all incoming or outgoing traffic (packets) of the
android device. This can be done using Wireshark [6] in a
computer which is connected to the same local network of
the android device.

Alternatively, we can use a similar application in the mobile
device. We have used Shark for Root [7] for this purpose.
A rooted device is not required for this step. Non-rooted
devices can use other applications, such as tPacketCapture,
which captures packets by creating a VPN and directing all
traffic through the VPN. We captured packets for a specific
amount of time. This step produces a packet dump (.pcap) file.

2) Netstat Logging: The packet dump does not directly
detect which packet is originated from/destined for which
mobile application. The system differentiates packets of
different applications by port numbers (source port for
outgoing packets or destination port for incoming packets).
Hence, we need to know which ports were being used
by which applications when the packet was captured. We
used the UNIX tool netstat [S] to get the mapping between
applications and port numbers at a specific time.

Since the packets are recorded for some duration of time
and netstat gives the port number vs. application mapping for
an instance of time (just when the command is executed), a
single netstat output will not suffice. Therefore, we executed
netstat periodically, while the packets were being recorded.

We used ADB [8] to communicate with the android device.
To access the interactive shell of the device, adb shell was
used. In our experiment, we connected the android device
with a UNIX computer. Then we executed the shell script
shown in Fig. 1 in the computer.

for 1 in {1..100}
do
adb shell ™
su -c ‘busybox netstat -pnt | grep tcp’
" > netstat
adb shell “"date +%s" > netdump$i
awk “{print $4 ":" $7}" netstat > netstattemp
awk -F":" "{print $5 " " $6}" netstattemp>>netdump$i
echo finished: $i
sleep 1
done

Fig. 1. Shell script used for netstat logging.

This script calls netstat 100 times, with 1 second interval
in between. It filters just the necessary information (port
numbers and corresponding pid/package names) from each
netstat output, and saves them in separate files, along with the
timestamp when the dump was taken. So after executing this
script, we had 100 files (namely netdumpl, netdump2,

netdumpl00). A single netdump file is shown in
Fig. 2.

1414082181

60340 6455/com.ideashower.readitlater.pro
33004 6455/com.ideashower.readitlater.pro
37442 7202/ com.google.android

35133 8947com.google.android

36012 5744/ com.facebook. katana
52004)(5759/com.facebook.orca

57317 6455/com.ideashower.readitlater.pro
10 58137 6455/com.ideashower.readitlater.pro
11 33681 7342/1v.n3o.shark

12 60273 401/system_server

13 oo

[E R SUVIT N

LRI

Fig. 2. A single netdump file

This step requires a rooted android device. Because, being
a stripped down variant of linux, Android does not come
with the netstat executable by default. So we used Busybox,
a tool that allows execution of all standard UNIX commands
in android. Busybox cannot be installed without super user
permissions.

3) Extracting necessary information from packet dump:
Packet dump (.pcap) contains comprehensive meta information
about all packets, along with their contents. However, we are
only interested in HTTP packets and only three fields of each
packet. Pcap filtering can be accomplished by many different
ways among which we used Wireshark.

We opened the pcap file in Wireshark. Then the following
display filter was applied on the dump:

http && ip.src == X.X.X.X

Here, X.X.X.X is the IP address of the device. This was
used to filter out the http responses. For now, we are only
interested in requests.

We kept only the following columns in Wireshark:

e Time (in Seconds since epoch format)
e Src Port

e Full Request URI

Then we exported the displayed packets summary in
a plain text file. In our experiment, we named the file
filtered.txt (shown in Fig. 3).

4) Aggregating packet dump and netstat logs: Before
this step, we had 100 files containing netstat outputs (port-
application mapping at specific times). And we had a file

filtered.txt, which contains the port-URL mapping for all
HTTP request packets. We have written a script which
processes all these files to produce the final App-URL table.

Since netdump files contains port-app mappings for
specific moments (1 second apart), a packet’s time will not
necessarily match exactly with any of these moments. To
assign such a packet to an application, we have made some
assumptions.

Let ¢ be the timestamp of a packet. Let ¢, to,
ts,...,t100 are the timestamps of the netstat outputs (they
are stored in corresponding netdump files). Of course
t1 < t1 <tz < ... < tigo . Ift <ty ort > tygg, We
discard the packet. We only consider packets with ¢ such that
t1 <t < tig0-

Now for each of these packets, there is an ¢ such that ¢; < ¢
and ¢;41 > t. We assign a packet to an application using the
following rules:

1) If the same application A was using the packet’s port
at both ¢, and ¢,4;, then application A is the sender
of the packet.

2) If application A was using the port at ¢;, and the port
was not in use at ¢;41, application A originated the
packet.

3) If the port was not in use at ¢;, and application A
was holding it at ¢;1;, application A originated the
packet.

4) If the port was being used by application A at ¢; and
application B at ¢;,; then,
if t —t; < t;41 —t, application A originated the
packet. Otherwise application B originated it.

5) If no application was using the port at either ¢; or
ti+1, We discard the packet.

Case 5 indicates that after t¢;, some application opened the
port, sent some packet(s) and then released the port before
ti+1. So this packet has gone untraced. We can lessen the
frequency of such occurrences by decreasing the interval
between t; and ¢; 1.

So for every packet (except the ones of case 5), we know
the app which originated it. And filtered.txt contains
Full request URI of all packets. So we now know the URL
specified in the packet was contacted by this application. We
have logged these (Application, URL) entries for each packet
and the App-URL table is ready. A sample table is shown in
Fig. 4 .

B. Matching the URLs with Domain-blacklists

When the App-URL table is ready, the table can be sent
to a central server. The server can search the table for already
known malicious domains, and notify the android device of
any rogue application which might be trying to connect to a
blacklisted domain. The server can also enhance its blacklist
by adding new domains that are contacted by a malicious
application.

Timestamp Port #
1414@82186. 261850
1414@82186.531015
1414882187 .769571
1414882187 .770059
1414082192.439645
1414082240 246866
1414082240.286386
1414082240.287393
1414082277.182687
10 1414@82279.105752
11 1414@82279.671243
12 1414082280.704813
13 1414082284.491800
14 1414082284.491922
15 1414082298.626474
16 1414@82302.333963

URL

47612 http://www.quora.com/

[C =R T, RSP R N RSY

39488 http://data.flurry.com/aap.do

57001 http://www.quora.com/fapi/do_action_POST

47614 http://gqsc.is.quoracdn.net/-28celf6c68935d6c5.css

47615 http://gsc.is.quoracdn.net/-aseaeaB65aef57c7.]s

47621 http://qph.is.quoracdn.net/main-thumb-t-4@52-58-khhbtngfzevs...
45838 http://api.duolingo.com/api/1/version_info

54574 http://api.duclingo.com/api/1/store/get_inventory

55690 http://api.duolingo.com/api/1/storefget_inventory

47634 http://www.memrise.com/api/auth/facebook/

47635 http://www.memrise.com/api/app/settings/

47636 http://www.memrise.com/api/level/get/?with_content=truellev...
47637 http://wwe.memrise.com/api/user/courses_learning/?user®5Fid...
47275 http://static.memrise.com/uploads/things/audio/14218347 136...
47276 http://static.memrise.com/uploads/things/audio/14218346_136...
54348 http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js

Fig. 3. Extracted information from the packet dump in filtered.txt file
Timestamp Port## App identifier URL
1 1.414@82194906204E9 52791 com.quora.android http://www.quora.com/ajax/action_log_POST
2 1.414@82195716373E9 42998 com.quora.android http://www.quora.com/webnode2/server_call POST
3 1.414@82196603555E9 47619 com.quora.android http://qph.is.quoracdn.net/main-thumb-9715372-5...
4 1.414@82201279886E9 52225 com.quora.android http://www. quora. com/webnode2/server_call POST
5 1.414082246246866E9 45838 com.duolingo http://api.duolingo.com/fapi/1/version_info
6 1.414082248286386E9 54574 com.duoclingo http://api.duolingo.com/api/l/store/get_invento...
7 1.414@82255987588E9 45838 com.duclingo http://api.duolingo.com/api/l/users/showfuserna...
8 1.414@82256455872E9 59259 com.duclingo http://api.duolingo.com/api/l/store/get_invento...
S 1.414@82269802286E9 39868 com.memrise.android http://data.flurry.com/aap.do
19
Fig. 4. Final output: App vs. URL table

We analyzed two known malwares using this method:
DroidKungFu and AnserverBot, both known for contacting
remote C&C servers [2]. Within minutes of installation Droid-
KungFu accessed www.waps.cn, which was listed as a mali-
cious domain in virustotal.com. Anserverbot did not contact
any blacklisted domain within the first 10 minutes when we
recorded packets. The reason might be using an unreliable and
freely available domain-blacklist from the internet. Or worse,
maybe it communicates over protocol(s) other than HTTP.

IV. WORK IN PROGRESS

We are trying to develop additional behavioral analysis
methods which will rely on behaviors other than network
traffic. For example, if we can log all system calls made
by an application, we can use it on known malware to find
patterns in sequence of system calls. These signatures can
be used to detect new applications infected by known malware.

Our final objective is to propose an intelligent detection
model, which will analyze multiple behaviors and integrate
the results for detecting malicious behavior.

For logging system calls, we have used strace [9]. But
Busybox is required to run strace in Android.

V. CONCLUSION

In this paper, we have discussed briefly about different
types of malware detection techniques and their effectiveness
with specific types of malware. We have thoroughly demon-
strated a behavioral detection method for detecting mobile
malware that can communicate with blacklisted domains and
pass sensitive personal / financial information. We have also
discussed our direction of research toward devising an intel-
ligent malware detection model. We hope our demonstration
presented in this paper will help researchers develop malware
detection applications in order to protect users of mobile
devices.

REFERENCES

[1] Kaspersky Lab and INTERPOL Survey Reports, “Mobile cyber threats.”

[2] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in IEEE Symposium on Security and Privacy, San Francisco,
CA, May 20-23, 2012, pp. 95-109.

[3] M. Chandramohan and H. B. K. Tan, “Detection of mobile malware in
the wild,” IEEE Computer, vol. 45, no. 9, pp. 65-71, Sep 2012.

[4] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis
for android malware detection,” in Internation Conference on Computa-
tional Intelligence and Security, Hainan, Dec 3-4 2011, pp. 1011-1015.

[5] Netstat command.

[6] Wireshark, A network protocol analyzer for Unix and Windows.

(71

(8]
(91

Shark for Root, an android application to capture incoming and outgoing
packets.

Android Debug Bridge.

Strace, a diagnostic userspace utility for Linux.

