
Sequencing System Calls for Effective Malware
Detection in Android

A. S. M. Ahsan-Ul-Haque1, Md. Shohrab Hossain1 and Mohammed Atiquzzaman2

1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh
2 School of Computer Science, University of Oklahoma, Norman, OK, USA

Email: ahsanhaquetarique@gmail.com, mshohrabhossain@cse.buet.ac.bd, atiq@ou.edu

Abstract—Malware is one of the biggest threats for the privacy
and security of the smart-phone users. Android is currently the
most popular operating system for smart-phones; consequently,
many malwares are directed toward Android devices. However,
the existing malware detection techniques tend to compromise
between accuracy and computational complexity. In this paper,
we have proposed a novel technique to monitor the behavior of
both malwares and benign applications using system calls and
have developed a mathematical model that can detect mobile
malwares. We have extracted features by sequencing the system
calls of these application. We have proposed a novel way of
feature reduction using Gaussian dissimilarity and compared
our feature selection technique with existing methods. Using
the extracted set of features, we have implemented a machine
learning classifier, namely Gaussian Bayes classifier, on two
different malware data-sets (obtained from Malware Genome
Project and Android Malware Dataset by Arguslab) and on non-
malware samples (obtained from Google Play Store). We have
found that our model is quite lightweight yet powerful to detect
malwares with significant accuracy of 98%.

Index Terms—Android, Malware, Strace, ADB, System Call

I. INTRODUCTION

Malware, a generic term for malicious software, refers to
any software designed to cause damage to a single computer,
server, or a computer network [1]. The activities of a malware
may range from corrupting system files, manipulating data of
other applications, to the extent of tracing keystrokes entered
by the user, tracking data sent over Bluetooth, Wireless LAN,
USB or monitoring network data used by other applications.
The survey, conducted by Kaspersky Lab and Interpol, shows
that 77% of accesses to the internet are performed by the
users through the help of a smart-phones and tablets [2].
Mobile applications are more preferable for social networking
services, managing emails, making transactions, etc. When
infected with malwares, these applications may breach privacy
and leak sensitive data to other parties, track financial records,
such as bank account number, related PIN number, etc.

The global use of smart-phone is on the rise. Smart-phone
users rely greatly on the efficiency of the tools and techniques
used for the detection of malwares. The main objective of
our work is to develop a technique for effective and accurate
malware detection.

There exist several popular operating systems for smart-
phones, such as iOS, Windows and Android. However, we
have chosen Android platform for malware detection, mainly

because of the following reasons: (1) most smart-phone de-
vices run on Android. As per reports of International Data
Corporation (IDC) [3], Android had total share of 81.4%
in smart-phone market in last quarter of 2016 and it grew
to 85.0% by the beginning of 2017. (2) Most smart-phone
malwares are created for Android operating system. In 2014,
Kaspersky Lab reported that the target of almost 98.05% of all
existing mobile malwares is to attack Android users [2]. (3)
Android is based on one of the Linux kernel’s Long-Term
Support (LTS) branches [4]. Hence, developing a malware
detection model for Android would allow us to use the same
for other Linux-based operating systems as well.

There exists many static and dynamic methods for mal-
ware detection. In static detection techniques [5]–[7], the
detection is done without running the applications. Although
static detection is very fast in case of known malwares, it
is obsolete against repackaged malwares. Dynamic detection
techniques [8]–[11], are more immune to repackaging and
steganography, but they require more time for training and
detection. Thus, existing methods tend to compromise between
accuracy and computational complexity. On the contrary, our
proposed method differs from the existing works as we have
implemented a dynamic method which is efficient and fast,
without compromising the accuracy.

The contributions of our work are as follows:

• We have extracted a set of distinctive features using
Markov model by analyzing the sequence of system call
logs that are made by malwares and benign applications.

• We have proposed a novel and simple way of feature
reduction technique using Gaussian dissimilarity.

• Using the reduced set of features in a standard machine
learning classifier, we have validated the effectiveness of
the features.

• We have validated the model using two different malware
data sets from Malware Genome Project [12] and Android
Malware Dataset (AMD) by ArgusLab [13].

We have trained and tested our detection method on a set
of 981 malwares acquired from Android Malware Genome
Project [12] and 234 malwares acquired from Android Mal-
ware Dataset provided by ArgusLab [13], and 319 non-
malware applications acquired from Google Play Store. Re-
sults show that our malware detection approach have found
significant improvement over the previous works with an accu-

racy rate of 98%. Our approaches will be helpful especially for
those who face trouble with limited processing capabilities and
battery constrained Android devices, since the set of features
we have used in our model is easy to extract (using Android
Device Bridge utility).

The rest of the paper is organized as follows. In Section II,
we have outlined the existing malware detection techniques.
Our proposed classification model (feature extraction process
using Markov model) is explained in Section III. Section IV
describes our approach for malware detection using Gaussian
Bayes classifier. Section VI discusses the experimental setups
and algorithms employed for the feature extraction, training
and testing phases. In Section VII, the experimental results are
presented to validate our model. Finally, Section VIII provides
concluding remarks.

II. RELATED WORKS

Malware utilizes a combination of techniques to avoid
detection and analysis, such as: dynamic execution [14], code
obfuscation [15], repackaging [16] and steganography [17].
According to the nature of the analysis, the existing malware
detection techniques in Android can be classified into static
and dynamic methods. In static methods, only some fixed
attributes of a potential malware application are tested against
a malware signature database. Examples of static features
include permissions and API calls which can be extracted
from the AndroidManifest.xml file. SigPID is a framework
presented by Lichao Sun et al. [5] for static permission based
detection. In the dynamic detection method [10], [11], the run-
time behaviors of an application (like network traffic, system
calls, CPU usage etc.) are monitored.

While surveying the literature, we found that there are
mainly four detection techniques used, which are as follows:

1) Permission based detection
2) Signature based detection
3) Network traffic analysis
4) Based on system calls
In this paper, system call based detection technique has been

employed. Machine learning using system call based classifi-
cation methods usually result in a high degree of accuracy
since they are able to capture the run-time behavior of the
mobile apps. Wahanggara and Prayud [9] presented system call
based model that uses Support Vector Machine method where
they had achieved 90% accuracy using polynomial kernel.
Deep4MalDroid is a deep learning framework for Android
malware detection based on system call graphs presented by
Hou et al. [8] where they have achieved an accuracy of
93.68%. Markov model-based system call graph analysis with
complex machine learning models get higher accuracy with the
expense of greater time for training. Some approaches, such
as by F. Ahmed et. al. [18], have tried to reduce the training
time by reducing the feature set using Correlation Coefficient
and Information Gain which resulted in an accuracy of 96.3%
using API calls in Windows. In this paper, We have reduced the
time by proposing a simpler way of feature reduction. We have
also used a very simple machine learning model (i.e. Naive

Gaussian Bayes Model) which does not require any hyper-
parameter. Consequently, we have improved the training time
without compromising the accuracy.

III. CLASSIFICATION MODEL: SEQUENCING SYSTEM
CALLS USING MARKOV CHAIN

This section establishes the relationship between our mal-
ware detection model with Markov model and shows the steps
of the feature extraction process.

A. Preprocessing

A system call is a request to kernel made by an active pro-
cess. Linux kernel implements around 300 system calls [19].
We collected system call traces of all applications of the data
set consisting of both malware and non-malware, the process
of which is described in details in Section VI. A sample trace
log may look like this: [ioctl, writev, getuid32, . . .], where
each entry is a system call.

Table I lists all the symbols and corresponding descriptions
which are defined in this Section and in Section IV, and used
throughout the rest of the paper.

TABLE I
SUMMARY OF NOTATIONS

Symbol Description

N Number of unique system calls

L Length of system call sequence

[Ai,j]
i=r,j=c
i=1,j=1 matrix A of dimension r × c

δ
(m)
l (si, sj) Transition freq. from si to sj , upto l, for mth sample

∆(m) Transition freq. matrix for mth sample

f
(m)
l (si) Freq. of system call si upto length l, for mth sample

Fm(si) Freq. of system call si upto length K, for mth sample

p(m)(si, sj) Transition probability from si to sj for mth sample

Pm 1-step transition probability matrix for mth sample

P
(λ)
m λ-step transition probability matrix for mth sample

φ(A) Unrolling operation to turn A into column vector

Xi ith step feature vector

X
(m)
i Value of ith step feature vector for mth sample

X X = [X1, ..., Xγ], feature vector list of order γ

y Class label, y = 0 for non-malware, y = 1 for malware

xi ith feature of feature list X

x
(m)
i Value of ith feature of feature list X

My Number of samples of class y during training

µi(y) Mean of xi for class y

σ2
i (y) Variance of xi for class y

x(n) nth test sample or data point

p(x(n)|y) Likelihood of nth test sample generated from class y

B. Transition Frequency Matrix

Let {s1, s2, ..., sN} be the set of all the system calls (N
being number of unique system calls) and [sm1

, sm2
, ..., smL

]
be the sequence of system calls for the mth application, where
L is the total number of system calls made by that application.

The transition frequency from si to sj , up to length l for this
application, δ(m)

l (si, sj), can be determined using Eqn. (1).

δ
(m)
l (si, sj) =

0, if l = 0, or 1

δ
(m)
l−1 (si, sj) + 1, if sj = sml

, si = sml−1

δ
(m)
l−1 (si, sj), otherwise

(1)
The full transition frequency matrix, ∆(m), is given by

Eqn. (2.) The entry ∆
(m)
i,j refers to the number of times the

application uses jth system call (sj) immediately after ith

system call (si).

∆(m) =

∆

(m)
1,1 . . . ∆

(m)
1,N

∆
(m)
2,1 . . . ∆

(m)
2,N

...
. . .

...
∆

(m)
N,1 . . . ∆

(m)
N,N

 = [δ
(m)
K (si, sj)]

i=N,j=N

i=1,j=1 (2)

C. Transition Probability Matrix

For the mth sample, we also need to record the frequency of
ith system call, Fm(si), which is given by Eqn. (4). f (m)

l (si)
is the frequency up to length l, as given by Eqn. (3).

f
(m)
l (si) =

0, if l = 0

f
(m)
l−1 (si) + 1, if si = sml

f
(m)
l−1 (si), otherwise

(3)

Fm(si) = f
(m)
L (si) (4)

Finally, we get the transition probability of jth system
call (sj) immediately after the ith system call (si), by using
Eqn. (5).

p(m)(si, sj) =

 ∆
(m)
i,j

Fm(si)
, if Fm(si) 6= 0

0, if Fm(si) = 0
(5)

Pm denotes the matrix of one-step transition probabilities
for the mth application, and is given by Eqn. (6).

Pm = P (1)
m = [p(m)(si, sj)]

i=N,j=N

i=1,j=1 (6)

We know from Markov chain, two-step probability matrix
can be obtained by

P (2)
m = P (1)

m · P (1)
m = P 2

m (7)

Similarly, we can obtain any λ-step probability matrix by
raising Pm to the power of λ,

P (λ)
m = Pλm (8)

Markov transition probability matrix can be shown using
Complete Directed Graph. Fig. 1 shows the graphical represen-
tation of a Markov transition probability matrix with only three
system calls. The nodes S1, S2 and S3 in the graph represent
the system calls. The labels on the directed edges represent

Fig. 1. The Pm matrix for the mth sample can be viewed as a complete
Markov chain. Here is an example showing 3 system calls.

the transition probabilities; for example: Pm1,2 denotes the 1-
step probability of system call S2 right after S1 for the mth

application.
Next, we define the unrolling operation of a matrix which

converts any matrix to a column vector. Let, A be any matrix
of dimension d× n.

A = [Ai,j]
i=d,j=n
i=1,j=1 =

A1,1 . . . A1,n

A2,1 . . . A2,n

...
. . .

...
Ad,1 . . . Ad,n

 (9)

The unrolling operation, φ of a matrix is defined as,

φ(A) = [A1,1 . . . A1,nA2,1 . . . A2,n . . . Ad,1 . . . Ad,n]
T (10)

D. Feature Extraction

After the unrolling operation of ith step transition proba-
bility matrix, we get the ith step feature vector. X(m)

i is the
data point corresponding to the mth application. X(m)

i lies in
a hyper-plane of dimension [0, 1]N

2

.

X
(m)
i = φ(P (i)

m)T (11)

The features in Xi denote the probabilities of one system
call occurring right after ith-step of another system call, as
previously described. Since all the entries in the feature ma-
trices denote probability, we do not need to further normalize
the features.

In general, we have used the list of feature vectors X of
order γ, as given by Eqn. (12), which consists of a total of
γN2 features.

X = [X1, X2, ..., Xγ] (12)

IV. GAUSSIAN BAYES CLASSIFICATION METHOD

In the classification step, we assume that each feature
follows a normal (Gaussian) distribution (The Gaussian ap-
proximation of a sample feature distribution is shown in
Fig. 7). We discuss the classification task using the features

of order γ = 1, i.e., X = [X1]. So, the number of features is
limited to N2.

A. Training

Let xi be the ith feature of the training samples and x(m)
i is

the value of the feature for mth sample. Now, let y denote the
class (or label) of the samples. We have two classes, defined
as in Eqn. (13).

y =

{
1, for malware
0, for non-malware

(13)

Let M0 and M1 be the number of non-malwares and the
number of malwares used in the training respectively. µi(y) is
the mean and σ2

i (y) is the variance of the ith feature, given
class y.

We get µi(y) from Eqn. (14).

µi(y) =
1

My

My∑
m=1

x
(m)
i (14)

Then, we calculate the variance using Eqn. (15).

σ2
i (y) =

1

My

My∑
m=1

(x
(m)
i − µi(y))2 (15)

The normal distribution over the ith feature xi, given the
class y is

p(xi : µi(y), σ2
i (y)|y) =

1√
2πσ2

i

exp(− (xi − µi)2

2σ2
i

) (16)

Eqn. (16) represents the likelihood of xi being generated
from class y.

B. Classification

We have used maximum likelihood estimation in the clas-
sification method. For a new nth sample with data-point x(n)

(with ith feature value being x(n)
i) we calculate p(x(n)

i |y = 0)

and p(x(n)
i |y = 1) using Eqn. (16).

Thus, assuming independence among the features, the like-
lihood of the new sample being malware is given by Eqn. (17).

p(x(n)|y = 1) =

N2∏
i=1

p(x
(n)
i : µi(y), σ2

i (y)|y = 1) (17)

Similarly, the likelihood of the new sample being non-
malware is given by Eqn. (18).

p(x(n)|y = 0) =

N2∏
i=1

p(x
(n)
i : µi(y), σ2

i (y)|y = 0) (18)

Finally we classify the new sample as,

{
app is a malware, if p(x(n)|y = 1) > p(x(n)|y = 0)

app is not a malware, otherwise

We can simplify Eqn. (17) and Eqn. (18) by using maximum
log likelihood as shown in Eqn. (19).

N2∏
i=1

p(x
(n)
i |y = 1) >

N2∏
i=1

p(x
(n)
i |y = 0) (19)

⇒
N2∑
i=1

log(p(x
(n)
i |y = 1)) >

N2∑
i=1

log(p(x
(n)
i |y = 0)) (20)

Hence, the classification of the new nth sample is given by,
app is a malware, if

∑N2

i=1 log(p(x
(n)
i |y = 1)) >∑N2

i=1 log(p(x
(n)
i |y = 0))

app is not a malware, otherwise

V. FEATURE SELECTION

In high dimensional data set feature selection is essential
to reduce the training time. As we can see from the previous
subsection, the extracted features have the space complexity of
O(γN2). There are many well known feature subset selection
heuristics, such as Information Gain, Gain Ratio etc. In this
paper, we propose another way of feature reduction, using
Gaussian Dissimilarity (GD).

Let µi(y) and σ2
i (y) respectively be the mean and the

variance of class y The dissimilarity heuristic for the ith

feature is defined in Eqn. (21).

GD(i) = −(
1√

2πσ2
i (0)

exp(− (µi(1)− µi(0))2

2σ2
i (0)

)

+
1√

2πσ2
i (1)

exp(− (µi(1)− µi(0))2

2σ2
i (1)

))

(21)

We compute Gaussian Dissimilarity for each element of X .
Then, the features are sorted based on their GD values in a
descending order. We select Xr ⊆ X , the first r features from
the list. In this paper, we have used r = 500.

This heuristic is effective because if two features have
relatively close mean and variance values for both malware
and non-malware samples, then that feature will not be able
to differentiate malwares from non-malwares effectively using
Gaussian Bayes classifier. From Eqn. (21), we can see that
for this type of features, the GD values will be very small.
Thus, the features with higher GD values will be able to more
effectively differentiate between malware and non-malware.

Since both of the terms on the right hand of Eqn. (21)
are non-negative, we introduce a new heuristic Logarithmic
Gaussian Dissimilarity (LGD), as given in Eqn (22) and
(23). LGD will be computationally more efficient since the
exponential terms are absent from this heuristic.

LGD(i) ∼ 1

2
log(2πσ2

i (0)) +
(µi(1)− µi(0))2

2σ2
i (0)

)

+
1

2
log(2πσ2

i (1)) +
(µi(1)− µi(0))2

2σ2
i (1)

)

(22)

Removing the constant terms from Eqn. (21), we get the
new Logarithmic Gaussian Dissimilarity (LGD) heuristic, as
given in Eqn. (23).

LGD(i) = log(σi(0)) +
(µi(1)− µi(0))2

2σ2
i (0)

)

+ log(σi(1)) +
(µi(1)− µi(0))2

2σ2
i (1)

)

= log(σi(0)σi(1))

+ (µi(1)− µi(0))2(
σi(0)2 + σi(1)2

2(σi(0)σi(1))2
))

(23)

VI. EXPERIMENTS

In this Section, we discuss the process of implementing the
model, developed in Section IV, using the physical Android
device.

A. Experimental Setup

We let all the applications (both malware and non-malware)
run sequentially on the same rooted Android device running
on Lollipop 5.1 (API 22). Our device choice helped us test
the behavior of more than 80% of the total Android devices at
present [4]. The run-time was also same for all applications.
This approach ensured the same environment for all of the
applications. The complete workflow is outlined in Fig. 2. We
used a total of 1215 malwares combined from two data-sets
and 319 non-malwares acquired from Google Playstore, as
shown in Table II.

TABLE II
NUMBER OF MOBILE APPS

Malware
Genome
Project

Android
Malware
Dataset

Google
Play
Store

Total

Malware 981 234 - 1215

Non-malware - - 319 319

We used standard Linux utility strace to collect system call
information of the applications. The strace log of a sample
application is shown in Fig. 3.

From the strace logs, we filtered out only the system calls
made by the applications. After this step, the system call log
of a sample application is shown in the Fig. 4.

Algorithm 1 shows how to parse the strace logs and get
the sequence of system calls in terms of unique ids using a
database. After this step, we found a total of 61 unique system
calls (N) used by the applications, as shown in Fig. 5.

After creating the ∆, F and P relational matrices for each
application, we extracted the feature vector X and finally
acquired the desired reduced set of features Xr. Every entry
in each of the data set denotes a probability, as explained in
Subsection III-C. The feature values of a sample application
is shown in Fig 6.

Fig. 2. Work-flow diagram of preprocessing and feature extraction

Fig. 3. System call log of an application

B. Implementing Gaussian Bayes Classifier

We used Scikit-Learn [20], which is a Python library for
machine learning, for training and testing and for measuring
the classification performance on the reduced feature sets. We
chose the Naive Gaussian Bayes classifier with full training

Fig. 4. Parsed System call trace of an application

Algorithm 1 Parse System Call
1: procedure PARSE-SYSCALL(stracelogs)
2: id← 1
3: for each log in stracelogs do
4: do
5: read system call s from log
6: if s does not match any previous system calls then
7: assign id to system call s and update database
8: current id← id
9: id← id+ 1

10: else
11: current id← id of s from database
12: end if
13: add id to file straceid[log]
14: while there are system calls remaining in s
15: end for
16: return straceid
17: end procedure

set and K-fold cross validation for the testing purpose, with
K = 7 to 10, the results of which are shown in Table III.
Table II shows the sources of the data-set used during the
experiments.

VII. EXPERIMENTAL RESULTS

The results of feature selection and K-fold cross validation
is discussed in this section.

A. Experimental values and Gaussian approximations

The probability density distribution of one of the sample
features and the Gaussian approximation of the sample feature
are shown in Fig. 7, for both malware and non-malware
classes. The low value of variance of malwares, in comparison
with non-malwares, denotes that there are not much difference
between the training samples for the selected feature, i.e., the
system call transitions for the malwares are very similar for
this feature.

B. Performance Metrics

In K-fold cross validation the True Positives (TP), False
Positives (FP), True negatives (TN) and False Negatives (FN)
values are actually averaged over the K − 1 test subsets. We
calculated the following metrics to determine the performance
of our model, as shown in Table III.

1) Accuracy (α): It refers to the proportion of correct
labeling of all the test data, which can be expressed as
follows:

α =
TP + TN

TP + TN + FP + FN
.

Fig. 5. The database containing all the unique system calls

Fig. 6. Feature values vs indices of a sample application

2) Recall (r): It measures the proportion of malwares that
are correctly identified and are computed as follows:

r =
TP

TP + FN
.

3) Specificity (ψ): Specificity (ψ) measures the proportion
of non-malware that are correctly identified.

ψ =
TN

TN + FP

4) Precision (ρ): It measures the proportion of the detected
malware that are actually malware.

ρ =
TP

TP + FP

5) F1-score (η): F1-score is the harmonic mean of preci-
sion and recall.

η = 2 · ρ× r
ρ+ r

Fig. 7. Histogram and distribution approximation for a single feature

TABLE III
PERFORMANCE METRICS (%)

K α r ψ ρ η

10 98 100 89.2 97.6 98.8

9 98.4 100 91.4 98.1 99

8 99 100 94.6 98.8 99.4

7 99.7 100 98.2 99.6 99.8

Using the proposed feature selection heuristic and 10-fold
cross validation, our model has achieved an accuracy of
98% whereas DREBIN [21] claims an accuracy of 95.9%
and DroidAPIMiner [22] reached an accuracy of 99%. So,
our model outperforms the existing frameworks on the same
dataset obtain from Malware Genome Project.

VIII. CONCLUSION

In this paper, we proposed a definitive and novel approach of
malware detection in Android devices. We extracted a distinc-
tive set of features which takes into account the probability
of one system call occurring after another. To improve the
training time, we proposed a novel way of feature selec-
tion using Gaussian Dissimilarity and Logarithmic Gaussian
Dissimilarity. We used the set of features in a standard yet
simple machine learning model to evaluate the effectiveness
of the features. We evaluated the performance of our model
using two different malware data sets obtained from Malware
Genome Project [12] and Android Malware Dataset provided
by ArgusLab [13]. The experimental results show that our
model has a significant accuracy of 98% to detect mobile
malwares. Furthermore, the graphical representations of the
features give us an insight regarding the high accuracy of
the model that will help other researchers with the required
quantitative information and guidelines.

REFERENCES

[1] Defining Malware. Web page. [Online]. Available: https://technet.
microsoft.com/en-us/library/dd632948.aspx

[2] Kaspersky Lab and INTERPOL, “Mobile Cyber Threats,” October,
2014. [Online]. Available: https://media.kaspersky.com/pdf/Kaspersky-
Lab-KSN-Report-mobile-cyberthreats-web.pdf

[3] International Data Corporation, Web page. [Online]. Available:
http://www.idc.com/promo/smartphone-market-share/os

[4] Google Developer Site. Web page. [Online]. Available: https:
//developer.android.com/guide/platform/index.html/#linux-kernel

[5] L. Sun, Z. Li, Q. Yan, W. Srisa-an, and Y. Pan, “SigPID: Significant
Permission Identification for Android Malware Detection,” in 11th Inter-
national Conference on Malicious and Unwanted Software (MALCON),
Puerto Rico, USA, October, 2016.

[6] Z. Aung and W. Zaw, “Permission-Based Android Malware Detection,”
International Journal of Scientific & Technology Research, vol. 2,
March, 2013.

[7] S. Hou, T. Lu, Y. Du, and J. Guo, “Static Detection of Android Malware
Based on Improved Random Forest Algorithm,” in IEEE International
Conference on Intelligence and Security Informatics (ISI), Beijing,
China, July, 2017, pp. 200–200.

[8] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: A Deep Learning
Framework for Android Malware Detection Based on Linux Kernel
System Call Graphs,” in IEEE/WIC/ACM International Conference on
Web Intelligence Workshops (WIW), Omaha, NE, USA, Oct 13-16, 2016.

[9] V. Wahanggara and Y. Prayudi, “Malware Detection Through Call
System on Android Smartphone Using Vector Machine Method,” in
Fourth International Conference on Cyber Security, Cyber Warfare, and
Digital Forensic (CyberSec), Jakarta, Indonesia, October, 2015, pp. 62–
67.

[10] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a Deeper Look into Android Applications,”
in ACM Symposium on Applied Computing, New York, NY, USA, 2013.

[11] G. Cabau, M. Buhu, and C. P. Oprisa, “Malware Classification Based
on Dynamic Behavior,” in 18th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara,
Romania, Sept, 2016, pp. 315–318.

[12] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in IEEE Symposium on Security and Privacy, San
Francisco, California, USA, May, 2012.

[13] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep Ground Truth
Analysis of Current Android Malware,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Bonn, Germany: Springer, July, 2017, pp. 252–276.

[14] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Security & Privacy, vol. 5,
no. 2, pp. 32–39, March, 2007.

[15] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Int. Conference on Broadband, Wireless Computing, Communication
and Applications, Fukuoka, Japan, November, 2010, pp. 297–300.

[16] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An Automatic and
Extensible Platform to Stress Test Android Anti-virus Systems,” in 9th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Heraklion, Crete, Greece: Springer,
July 26-27, 2012.

[17] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal,
and N. Borisov, “Stegobot: A Covert Social Network Botnet,” Informa-
tion Hiding, Lecture Notes in Computer Science, vol. 6958, pp. 299–313,
2011.

[18] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using Spatio-
temporal Information in API Calls with Machine Learning Algorithms
for Malware Detection,” in Proceedings of the 2nd ACM Workshop on
Security and Artificial Intelligence, New York, NY, USA, 2009, pp. 55–
62.

[19] R. Love, Linux System Programming: Talking Directly to the Kernel and
C Library. O’Reilly, 2013.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] D. Arp, M. Spreitzenbarth, M. Hbner, H. Gascon, and K. Rieck,
“DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket,” in Symposium on Network and Distributed System Security
(NDSS), 02 2014.

[22] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level Fea-
tures for Robust Malware Detection in Android,” in Security and Privacy
in Communication Networks, T. Zia, A. Zomaya, V. Varadharajan, and
M. Mao, Eds. Cham: Springer International Publishing, 2013, pp. 86–
103.

