
Domain Flux-based DGA Botnet Detection Using
Feedforward Neural Network

Md. Ishtiaq Ashiq1, Protick Bhowmick1, Md. Shohrab Hossain1, Husnu S. Narman2

1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh
2Weisberg Division of Computer Science, Marshall University, Huntington, WV, USA

Email: ishtiaqashiq5@gmail.com, protickbhowmick1994@gmail.com, mshohrabhossain@cse.buet.ac.bd, narman@marshall.edu

Abstract—Botnets have been a major area of concern in the
field of cybersecurity. There have been a lot of research works
for detection of botnets. However, everyday cybercriminals are
coming up with new ideas to counter the well-known detection
methods. One such popular method is domain flux-based botnets
in which a large number of domain names are produced
using domain generation algorithm. In this paper, we have
proposed a robust way of detecting DGA-based botnets using few
novel features covering both syntactic and semantic viewpoints.
We have used Area under ROC curve as our performance
metric since it provides comprehensive information about the
performance of binary classifiers at various thresholds. Results
show that our approach performs significantly better than the
baseline approach. Our proposed method can help in detecting
established DGA bots (equipped with extensive features) as well
as prospective advanced DGA bots imitating real-world domain
names.

Index terms— Botnet detection, Domain Flux, DGA, Neu-
ral Network, C&C Server, HMM, edit distance, ROC curve

I. INTRODUCTION

Military communication involves the transmission of heav-
ily secured information. These operations entail communica-
tion between personnel not only within the same nation but
also with security organizations internationally. Thus, even a
minor infiltration of military network can be catastrophic in
context of the national risk it poses as well as the potential
consequences it will have internationally. Now one way of
invading into this network is botnet. Using botnet, adversaries
can collect a vast amount of private information, commit fi-
nancial fraud, identity theft, launch a DDoS attack or distribute
other malwares, such as viruses or adwares [1]. That is why,
in this paper, we have proposed a methodology that will help
to preclude DGA botnet attacks in military network and reveal
potential security breaches upfront.

Among different types of botnets, one notorious variant
uses of domain fluxing method, in which botmaster constantly
changes the domain name of the Command and Control (C&C)
server very frequently. These domains are produced using
an algorithm called Domain Generation Algorithm (DGA).
Domain flux-based botnets are stealthier and consequently
much harder to detect due to its flexibility.

There have been few research works [2]–[10] on DGA-
based botnet detection. Yadav et al. [2] used a methodol-
ogy based on the observation that DGAs do not generally
produce well-formed and pronounceable domain names. This

implies that algorithmically generated domain names will
exhibit vastly different characteristics from legitimate domain
names. Raghuram et al. [3] proposed a method for detecting
anomalous domain names with a probability model. Zhang
et al. [4] tried to detect DGA domain names by extracting
meaningful morphological units from domain names on the
basis that the distribution of morphemes would be different
in human-generated domains and DGAs. Mowbray et al. [6]
worked on detecting DGA domain names by inspecting DNS
queries. They examined second-level string lengths in the
domain names to find unusual lengths that differ greatly
from benign domain names. Marchal et al. [7] proposed a
method that detects malicious domain names by comparing
its semantic similarity with known domain names. Han et
al. [9] proposed a method to identify DGA domains by lexical
attributes and then using Support Vector Machine as classifier.
Due to the vulnerability of static feature based methodology,
another recent work [10] suggested a combination of the N-
gram model with deep convolutional neural network to classify
between DGA and benign domains. Â

The basic limitations of some of the aforementioned
works [3], [6], [7] are that if random meaningful word phrases
are coupled together, they might not work. In [4], repetition
of words and suffixes in domain names back and forth will
neutralize the algorithm. DGA domains showing a bit of
regularity will fail [6].

Our work differs from the previous works that we have
exploited the irregularities in DGA domains from both lexical
and contextual standpoint. We have tried to find out the
syntactic mismatches as well as the semantic inconsistencies
in the DGA generated domains.

The objective of this paper is to find out a robust way to
detect the presence of DGA domains with better accuracy.
The contributions of this work are: (i) we have developed
a heuristic for evaluation and detection of botnets inspecting
the several attributes in a very simple and efficient way, (ii)
We have compared our proposed system with the existing
ones with respect to accuracy. Our proposed method can help
in detecting established DGA bots (equipped with extensive
features) as well as prospective advanced DGA bots imitating
real-world domain names.

The rest of the paper is organized as follows. In Section
II, we propose our detection methodology. Details about the

This is the Camera-ready version of the paper published in IEEE MILCOM, Norfolk, VA, USA, Nov 12-14, 2019 



dataset and performance metrics are described in Section III.
Results of our approach are presented in Section IV. Finally,
Section V has the concluding remarks.

II. PROPOSED APPROACH

We model a feed-forward Neural Network in order to
partition DGA generated domain names from benign domain
names. We have used eight robust features: five of them repre-
sents the syntactic congruity whereas the rest three represents
the semantic appropriacy of domain names.

A. Features

We have chosen the following features to build our classi-
fier:

1) Length: Early DGAs generally show uniformity in the
length of domain names. Domain length might be inadequate
in the detection of advanced DGA, but is a good indicator
of malignancy in many cases. For example, the Zeus bot
domain contains domains like “ceqolfhbqcuwqkxbmayh” or
“lbydhalbnzpwcpfbytuqwdatcor”. The abnormality in length
of these domains suggests that they are not human given
domain names.

2) Vowel-Consonant Ratio: This feature is a good indicator
of DGA generated algorithms. DGAs make random domain
names with an approximately constant ratio of vowels and
consonants periodically inserting vowels in between consonant
strings. Low vowel consonant ratio can indicate that the
domain name might be generated with an algorithm.

3) Four-Gram Score: This feature is a score value depend-
ing on the number of contiguous substrings without a vowel,
which will be very advantageous in case of DGA domains with
reasonable vowel-consonant ratio. For example, “tdtxaaaa”
might be a good candidate of DGA generated domain name.
However, with a vowel-consonant ratio of 0.5, it is similar to
real-world words or phrases. This feature takes into account
the order of the letters. A long string of consonants (or vowels)
is uncommon in a language, making it unpronounceable.

For the calculation of this score, we find out the number
of substrings of length four without a vowel within a domain
name, and the ratio of that number to the length of the domain
name is our score. We have chosen substring length as four
because generally, four consecutive letters in a pronounceable
word do have a vowel in between.

4) Regularity Score: The regularity score takes into account
the syntactic dissimilarity with actual words. Here we use the
edit distance as our similarity measure. Edit distance takes
two words as function parameters and returns the minimum
number of deletions, insertions, or replacements to transform
one word into another. However, as we want to find the closest
matching words for a certain domain from possibly many
thousands of words, this approach would be too inefficient.
To make it efficient, we have used trie data structure where
all shared prefixes of all the words will follow the same
path. Therefore, there is no need to search through the whole
dictionary to find our closest matching. This whole process is
described in further detail in [11].

Build trie data structure from English dictionary.

Initiate regularity score to zero.

For every domain name, repeat
the next two steps until the thresh-

old for edit distance is crossed.

Calculate edit distance between the
prefix denoted by the path from root

to current node and the domain name.

Increment whenever reaching a node
marked with end of a word with edit
distance less than a certain threshold.

Return the number of words
less than the threshold.

Fig. 1: Regularity Score step by step

The maximum cost is based on the length of the domain. We
use the number of bits required to represent the length of the
domain to denote the maximum cost (c) and search for words
in the dictionary that are c edits away from our domain. This
word count is used as our feature value. The whole procedure
is illustrated in Fig. 1 flow chart.

5) Markov Score: This score is intended for finding out
the randomness of the domain name. The more random the
letter distribution within a domain name is, the more likely it
is to be a DGA generated domain name. We have used a basic
Markov model to find the probability of a transition within a
2-gram. Markov score is a good indicator of the randomness
of a domain name, taking into account how likely the one step
transitions are within it.

6) Meaning Score: Real world domain names tend to
include meaningful words or phrases (there are exceptions, but
the majority shows this trend). Most of the widespread domain
generation algorithms use pseudo-random number generator
for creating the domain names, and the resulting domain
names have a negligible number of meaningful sub-phrases
within. This feature can be exceptionally useful for DGAs that
do not affix real words or expressions to form domain names.

For the calculation of this score, we extract the number of
meaningful substrings or phrases within the domain name and
generate a meaning score from that number by normalizing
with respect to the length of the domain name.

7) Frequency Score: This score denotes the frequency of
words and phrases within the domain names used over the
Internet. It will work effectively for detecting DGAs that
concatenates random phrases from the dictionary. The fact
that domain names are more likely to contain widely used
words contributes to the strength of this feature. We have
used an open source API phrasefinder to get the frequency



scores from Google corpus. Each sub strings of length greater
than three are candidates for the score and they have an
exponentially weighted contribution according to their lengths.
Non-proportionate scaling is used as frequency of sub-strings
over Internet has a skewed decrease with respect to length.

8) Correlation Score: We have gone through the relevance
of a domain name from the perspective of meaning, frequency
of use and randomness. However, our scores were all from
segregated segments of a domain name, none of the features
worked on the correlation of those segments. In simple words,
two substrings within a domain name might pass every pre-
vious checkpoint, but there might be no correlation between
them, which will make the validity of the domain name null.
The calculation procedure is illustrated in Algorithm 1.

Symbols Used: Correlation Matrix (CM ), Reference Text
File (r), correlation score (cs), Correlation Matrix entry :
occurrence of word pair a and b in same sentence (cmb

a),
input domain name (d)

Algorithm 1: Correlation Score step by step
1: procedure CORRELATION SCORE
2: for l ∈ lines in b:
3: for every pair of consecutive words a, b ∈ l:
4: cmb

a++
5: Normalize CM
6: cs← 0
7: for each consecutive sub-string pair a, b ∈ d:
8: cs← cs+ cmb

a

9: return cs

B. Justification of robustness

The whole idea of our features comes from the fact that
human given domain names are pronounceable, sometimes,
contextually meaningful, does not contain improbable letter
combination and generally are combinations of two or more
meaningful words. We have derived our features from these
attributes. Our four-gram score will detect domains that will
pass length and vowel-consonant ratio but will be highly
random, such as “tdattxa”. Markov score is able to detect
improbable letter combination. Meaning score and frequency
score are there to detect syntactically regular but meaningless
domains such as “eftanne”. Regularity score tries to match
how syntactically close a given domain name is to the actual
dictionary words. Humane domain names (even misnomer
ones) will exhibit regular words. Correlation score is able
to detect domains that are generated by smart bots. This
score detects the contextual similarity of word parts within
the domain name.

III. EXPERIMENTS

In this section, we present a detailed discussion of our col-
lected dataset, our performance metric, and hyperparameters
used in our experiment.

A. Dataset Details

We have collected our dataset from [12]. They used two
different algorithms to produce two sets of data with different
metrics. Two algorithms were based on the Hidden Markov
Model and Probabilistic Context Free Grammar. Domains
generated from these two DGAs are much harder to detect
[12] and have been used for the evaluation of our proposal.
It illustrates flaws in the lexical feature based DGA detection
system such as [2]. Another repository of the dataset con-
tained a set of known botnets and their used domain names.
We explain briefly these two datasets in the following two
paragraphs.

In HMM-based dataset, eight files (DNL1, DNL2, DNL3,
DNL4, 9ML1, 500KL1, 500KL2, 500KL3) were generated
varying two parameters. One is L - maximum number of
history symbols used to generate the HMM transition prob-
ability, and other is the dictionary for constructing the model.
DNL files were built with English dictionary as the source.
9ML1 file was generated from 9 million domain names from
IPv4 space, and 500KL files were generated from randomly
selected 500000 entries from this 9 million IPv4 space. Words
of last four files do have numbers in between and are less
likely to be pronounceable whereas the probability of having
pronounceable words in DNL files, especially in DNL3 or
DNL4, are quite high.

In PCFG-based dataset, four files (pcfg dict,
pcfg dict num, pcfg ipv4, pcfg ipv4 num) were generated
using the English dictionary with hyphenation along with
a list of IPv4 domain names. Here, each word was derived
from a set of production rules in a Grammar G(N,

∑
, R, S).

Each rule also contained a probability associated with it.
First, two files were generated using English syllables as
the source and as such contained pronounceable words. Last
two were generated using IPv4 syllables. There is another
directory in the dataset other that contains a list of domain
names generated from some known Botnets such as Zeus,
Conflicker, Kraken, Srizbi, Torpig.

It contains another file named Kwyjibo which contains some
very pronounceable and short English words such as ‘slitingly’
or ‘underlining’. Domains of this file will not only work
as a metric to judge how good our system does to detect
pronounceable short DGAs but also will give us an idea about
the number of false positives in our system. Too good a
performance in this file may indicate a high false positive
rate in DGA domain detection because these words may not
have an associated legitimate domain now, but they may be
registered as one in future.

TABLE I: Symbols and their meaning
Name Symbol Name Symbol

True Positive TP True Negative TN
False Positive FP False Negative FN

Accuracy α F1 score f
Precision p Recall r

Learning Rate ε



B. Performance Metric

We have used the following performance metrics for eval-
uation of our system. Symbols used are listed in Table I.

1) Accuracy: Accuracy of botnet classification is denoted
by the percentage of correctly predicted label in test data,
calculated as follows:

α =
TP + TN

TP + TN + FP + FN
(1)

2) F1 Score: F1 score can be comprehended as a weighted
function of recall and precision, computed as follows:

f = 2 ∗ p ∗ r
p+ r

(2)

Here, Precision (p) is the ratio of correctly predicted positive
results to all positive predictions by the classifier. Recall (r)
is the ratio of correctly predicted positive results to all the
samples that should be predicted as positive.

3) ROC curve and AUC score: The full form of AUROC
is the area under the Receiver Operating Characteristic curve.
It can be interpreted as the percentage of randomly drawn
samples that were given correct labels. To compute the AU-
ROC value, we need to build Receiver Operating Characteristic
(ROC) curve first. Hence, FP rate (FPR) and TP rate (TPR)
are calculated for different thresholds, and they are plotted in
a single graph, where TPR values are on the y-axis, and FPR
values are plotted along the x-axis. Equation of FPR and TPR
is the following:

FPR =
FP

TN + FP
(3)

TPR =
TP

TP + FN
(4)

The resulting curve is called ROC curve. The AUROC value
or AUC score is the area under this curve. In an ideal case,
ROC curve will touch the leftmost FPR = 0 line and then
follow the TPR = 1 line, and the AUC score will be 1.
Consequently, we can visually judge the performance of our
classifier looking at the distance from y = x line.

C. Experimented Values

We have trained our feedforward neural network model with
the feature values generated from our dataset. Our baseline
approach is [2]. In order to train our neural network, we varied
our hyperparameters according to Table II. After running
several times, we got an approximation that Learning rate (ε)
0.05, epoch 150, four hidden layers with 40, 30, 20 and 20
neurons in each layer respectively provided the best result. Our
training accuracy is slightly better for four hidden layers than
2 or 3. One thing to note here is that for easily detectable
domains, less hidden layers produce slightly better results,
however, for files with hard-to-detect domain names, use of
4 hidden layers gives considerably better output. Hence, the
above parameters perform better on average. Here, we limit
our hidden layers to 4 to prevent overfitting.

We used Adam optimizer in our code. Initial epochs may
contain few spikes indicating that the optimizer is yet to find

TABLE II: Hyperparameters used during training
Hyper parameter Range
Learning Rate (ε) 0.05-0.6

Epoch 120-200
Hidden Layer 2-4

Cross Fold No fold, 3, 5
Neurons in hidden layers 10-50, 7-40, 5-30, 2-20

Number of runs 200

TABLE III: Results
File Name Test Accuracy F1 score AUC score Comment

9ML1 92% 0.92 0.96 Excellent
500KL1 96% 0.96 0.98 Excellent
500KL2 95% 0.95 0.98 Excellent
500KL3 86% 0.86 0.93 Excellent
DNL1 85% 0.85 0.92 Excellent
DNL2 82% 0.82 0.89 Excellent
DNL3 81% 0.81 0.88 Good
DNL4 81% 0.81 0.88 Good
kraken 96% 0.96 0.99 Excellent
srizbi 97% 0.97 0.98 Excellent
torpig 99% 0.99 0.99 Excellent
zeus 100% 1.00 1.00 Excellent

conflicker 97% 0.97 0.98 Excellent
kwyjibo 70% 0.70 0.79 Moderate
pcfg dict 70% 0.70 0.77 Moderate

pcfg dict num 73% 0.73 0.79 Moderate
pcfg ipv4 85% 0.85 0.92 Excellent

pcfg ipv4 num 86% 0.86 0.94 Excellent

the correct path to a minimum point in the cost function vs.
input graph. As stated in the previous section, our cost function
is mean squared error.

IV. RESULTS

We have compared our findings with [2] which used a
methodology based on the observation that DGAs do not
generally produce well-formed and pronounceable domain
names. They proposed three different metrics to calculate
the probability of a domain belonging to a particular bot-
net: Kullback-Leibler distance, Edit Distance, and Jaccard
Distance [2]. These detection schemes yielded up to 100%
accuracy with a very low false positive rate. Hence, we have
compared our findings with the result of this approach.

The test phase was done on the test data (20% of total
samples). The result is shown in Table III. If AUC score is
greater than 0.9, we call it excellent. If it falls within the
range 0.80-0.9, it is good. Within 0.70-0.80 is moderate and
anything less than 0.70 is termed as poor. These results are
the approximate average of running the code 1000 times.

A. Comparing HMM-based DGAs

Fig 2 shows the comparisons between our results and the
results achieved from the two methods described in [2]. The
first two pictures were collected from [12]. Here, we see ROC
curve for the files in our ‘hmm dga’ directory.

As described earlier, ‘DN’ files were produced from English
dictionary using HMM. So, the letter sequence followed a real-
world pattern which made some of our features (length, vowel-
consonant ratio, four-gram score, or Markov score) ineffective.
Hence, ROC curve for highly random domains in 9ML1 or
500KL1 files encompasses the upper region of y = x and



(a) using KL distance [12] (b) using Jaccard Index [12]

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve
 R
at
e

ROC curve for HMM BOTNETs, 20 times, 2000 data

500KL3, AUC = 0.93
500KL2, AUC = 0.98
DNL3, AUC = 0.88
DNL2, AUC = 0.89
9ML1, AUC = 0.96
DNL4, AUC = 0.88
DNL1, AUC = 0.92
500KL1, AUC = 0.98

(c) Our approach

Fig. 2: Comparison between baseline approach and our approach for ‘hmm’ dataset

(a) using KL distance [12] (b) using Jaccard Index [12]

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

ROC curve for OTHER BOTNETs, 20 times, 2000 data

500KL3, AUC = 0.93
kwyjibo, AUC = 0.79
zeus, AUC = 1.00
srizbi, AUC = 0.98
kraken, AUC = 0.99
conflicker, AUC = 0.98
pcfg_ipv4_num, AUC = 0.93
torpig, AUC = 0.99

(c) Our approach

Fig. 3: Comparison between baseline approach and our approach for ‘other’ Dataset

(a) using KL distance [12] (b) using Jaccard Index [12]

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue

 P
os
iti
ve

 R
at
e

ROC curve for PCFG BOTNETs, 20 times, 2000 data

pcfg_dict, AUC = 0.77
pcfg_ipv4, AUC = 0.92
pcfg_ipv4_num, AUC = 0.94
pcfg_dict_num, AUC = 0.79

(c) Our approach

Fig. 4: Comparison between baseline approach and our approach for ‘pcfg’ dataset

area under the curve is high but curve for DNL3, or DNL4 is
comparatively closer to y = x line.

B. Comparing Real DGAs
Fig 3 shows the comparisons between our results and the

results achieved for the files in our ‘other’ directory. Results
for this directory is very satisfactory. Conflicker, Zeus, Srizbi,
Torpig, and Kraken contain highly random words. So, our
syntactic features are adequate for detection of these domains.
Results for Kwyjibo is slightly poorer because it contains
domain like ‘ending’, ‘devouringly’ or ‘underlandings’ which
depict real-world words. These domains are not only pro-
nounceable but also realistic. Even if they may not exist now,
but definitely there could be domains like www.ending.com in
the future. Thus, in a way, our system is better because the

number of false positive in our system will be low. For the ones
that got detected even after being pronounceable is due to our
correlation and frequency score. Correlation score will point
out the incoherence between word segments of the domain
name. For example, ‘sulfateful’ contains two very improbable
word segments - ‘sulfate’, a chemical compound and ‘ful’,
a vastly used English word suffix. Obviously, the correlation
score would be low in this case. Frequency score will depict
relatively lower usage over the internet.

C. Comparing PCFG based DGAs
Fig 4 shows the comparisons between our results and the

results achieved for the files in ‘pcfg directory. As these
domains were produced from English syllables, they are
highly pronounceable. For the same reasoning as ‘Kwyjibo’



TABLE IV: Quantitative comparison with Baseline Approach
File KL score JI score Our result

9ML1 0.70 0.70 0.96
500KL1 0.84 0.90 0.98
500KL2 0.86 0.92 0.98
500KL3 0.55 0.62 0.93
DNL1 0.84 0.91 0.92
DNL2 0.83 0.90 0.89
DNL3 0.84 0.89 0.88
DNL4 0.84 0.87 0.88
kraken 0.88 0.90 0.99
srizbi 0.95 0.91 0.98
torpig 0.95 0.99 0.99
zeus 0.94 1.00 1.00

conflicker 0.89 0.88 0.98
kwyjibo 0.81 0.89 0.79
pcfg dict 0.80 0.88 0.77

pcfg dict num 0.75 0.86 0.79
pcfg ipv4 0.75 0.88 0.92

pcfg ipv4 num 0.58 0.60 0.94

domains, results are slightly inferior for ‘pcfg dict’ and
‘pcfg dict num’ files. ‘pcfg ipv4 num’ and ‘pcfg ipv4’ has
a better score because our correlation score was able to detect
the incoherence among domain word segments and corpus
score indicated the low or no use of these domains over the
internet. Another important thing to note, ‘pcfg dict num’
and ‘pcfg ipv4 num’ contain numbers. So results should be
theoretically better compared to dict or ipv4 files as the
regularity score will come into account but AUC score is
almost same for ’pcfg dict’ and ‘pcfg dict num’ because of
their highly realistic nature.

D. Comparison with baseline approach

Table IV shows a comparison with our baseline approach.
The classifier of [2] could not classify ‘500KL3’ (which is
the best HMM-based DGA [12]) properly, and it had an AUC
score of around 0.5. Our neural net has been able to detect
this DGA quite well. ‘pcfg ipv4 num’ is the best PCFG based
DGA and again our system had a significantly high score
than [2]. Key findings from this table can be categorized into
two groups. For files consisting of words with highly random
and improbable letter combination, our score is excellent. Our
syntactic features are adequate enough to separate the domains
into two groups in this case. For files consisting of words with
highly pronounceable nature (specially without any numbers
in between), our score is slightly inferior than other files yet
better than our baseline approach. In this case, the correlation
score or frequency score are able to find the incoherence
among word segments or absence of the word segments over
the corpus dataset.

In Fig. 5, we have shown a comparison using bar graph
with baseline approach. It shows that on average, our result
is significantly better than the two scores of the baseline ap-
proach [2]. More importantly, the confidence interval suggests
that variation of result in our system are not be as much as
the other two methods.

V. CONCLUSION

In this paper, we proposed a robust DGA domain detection
system using the feedforward neural network. Our proposed

KL score JI score Our score
0.0

0.2

0.4

0.6

0.8

1.0

AU
C 
sc
or
e

Confidence Interval Bar Graph

Fig. 5: Confidence Interval Bar Graph

diverse features extensively tackle the problem from two
aspects: syntactically and semantically. The result is exception-
ally well on DGAs that use pseudo-random number generator.
Our regularity score and Markov score exploits this trait for
better detection. For DGAs that use pronounceable domain
names, frequency score, and meaning score are useful for
evaluating the validity of the phrases within the domain name.
When related phrases and words appear within the domain
names, the correlation score represents the association and
correlation of them. Overall results show that our method can
detect DGA botnets with commendable accuracy.

REFERENCES

[1] B. Hammi, S. Zeadally, and R. Khatoun, “An empirical investigation
of botnet as a service for cyberattacks,” Transactions on Emerging
Telecommunications Technologies, vol. 30, pp. 1068–1082, 2019.

[2] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan, “Detecting al-
gorithmically generated domain-flux attacks with DNS traffic analysis,”
IEEE/ACM Transactions on Networking, vol. 20, no. 5, 2012.

[3] J. Raghuram, D. J. Miller, and G. Kesidis, “Unsupervised, low latency
anomaly detection of algorithmically generated domain names by gen-
erative probabilistic modeling,” Journal of Advanced Research, vol. 5,
no. 4, pp. 423–433, 2014.

[4] W.-w. Zhang, J. Gong, and Q. Liu, “Detecting machine generated
domain names based on morpheme features,” in 1st International Work-
shop on Cloud Computing and Information Security (IEEE CloudCom),
Bristol, UK, Dec 2-5, 2013.

[5] M. S. Hossain, A. Paul, M. H. Islam, and M. Atiquzzaman, “Survey of
the protection mechanisms to the SSL-based session hijacking attacks,”
Journal of Network Protocols and Algorithms, vol. 10, no. 1, pp. 83–108,
2018.

[6] M. Mowbray and J. Hagen, “Finding domain-generation algorithms by
looking at length distribution,” in IEEE International Symposium on
Software Reliability Engineering Workshops, Naples, Italy, Nov 2014.

[7] S. Marchai, J. Francois, R. State, and T. Engel, “Semantic based dns
forensics,” in International Workshop on Information Forensics and
Security, Tenerife, Spain, Dec 2012, pp. 91–96.

[8] H. S. Narman, M. S. Hossain, and M. Atiquzzaman, “Multi class
traffic analysis of single and multi-band queuing system,” in IEEE
GLOBECOM, Atlanta, GA, USA, Dec 9-13, 2013.

[9] C. Han and Y. Zhang, “CODDULM: an approach for detecting C&C
domains of DGA on passive DNS traffic,” in International Conference
on Computer Science and Network Technology, Dalian, China, Oct 2017.

[10] C. Xu, J. Shen, and X. Du, “Detection method of domain names
generated by DGAs based on semantic representation and deep neural
network,” Elsevier Computers and Security, vol. 85, pp. 77–88, August.

[11] “Fast and Easy Levenshtein distance using a Trie,”
http://stevehanov.ca/blog/index.php?id=114.

[12] F. Yu, L. Yu, O. Hambolu, and et al., “Stealthy Domain Generation
Algorithms,” IEEE/ACM Transactions on Networking, vol. 12, no. 6,
pp. 1430–1443, 2017.


