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Abstract—Identifying vulnerabilities in complex 5G network
protocols is a challenging task. Manual analysis is time-
consuming and often inadequate. Modern ML and NLP meth-
ods, though effective, are resource-intensive and struggle to
find implicit vulnerabilities. In this research, we utilize GPT-
4’s advanced language understanding to detect vulnerabilities
directly from 5G specifications. To assess GPT-4’s fundamental
capabilities in this domain, we first adopt a zero-shot approach
that relies solely on the specification text without external
guidance. For detecting more sophisticated vulnerabilities that
require deep contextual understanding, we introduce a novel
domain-aware strategy, where we explicitly teach GPT-4 about
security properties and hazard indicators from related works
using few-shot learning. We further employ chain-of-thought
prompting to guide the model through structured reasoning steps
to identify violations or exploitations that may lead to vulnera-
bilities. A two-tier filtering process ensures that only promising
test-cases are retained. Our method has identified 47 potential
vulnerabilities in 5G mobility management procedures, including
27 previously unreported issues, and generated corresponding
test-cases. Simulating 14 of them, we have found 9 vulnerabilities,
five of which are new. The zero-shot approach is effective in
detecting procedural and validation flaws, while the domain-
aware method excels in finding protocol violations and advanced
attack scenarios. These findings validate our methodology and
demonstrate its strength in discovering both known and novel
vulnerabilities in 5G protocols.

Index Terms—5G, vulnerability detection, LLM, network se-
curity, AI for security, prompt engineering, few-shot learning.

I. INTRODUCTION

5G standards, developed by the 3rd Generation Partnership
Project (3GPP) [1], incorporate complex technologies and

protocols that, while innovative, also open up new vulnerabil-
ities. These vulnerabilities arise from the increased network
complexity, the integration of legacy and new technologies
for backward compatibility, and the implementation of ad-
vanced features such as network slicing and virtualization.
Finding these vulnerabilities is particularly challenging due
to the complexity and vastness of the specifications. Various
methods exist for detecting vulnerabilities in LTE and 5G pro-
tocols, including formal verification [2]–[6], adversarial testing

framework [2], and negative testing framework [7]. However,
these methods require extensive manual analysis and expert
knowledge, which limit their scalability. Recent advances in
the field of Machine Learning (ML) and Natural Language
Processing (NLP) have enabled more sophisticated analysis of
cellular protocols [8]–[12]. ML-based fuzzing techniques [9],
[13], [14] can uncover security flaws that may not be apparent
through conventional testing methods. However, custom NLP
methods often struggle with the technical language used in
these documents, and ML models require substantial resources
and high-quality training data. These limitations highlight the
need for scalable models that can address the complexity of
finding vulnerabilities in 5G specifications.

State-of-the-art LLMs like GPT-4 [15] are increasingly
being used in security testing [16]–[24], but their application is
still mostly limited to code-based analysis rather than natural
language based technical documents. These models, trained on
diverse datasets, excel in understanding context and nuances
in unstructured text; and identifying subtle cues for vulner-
abilities, regardless of sentence structure. Unlike traditional
ML models, GPT-4 can adapt to new data without extensive
fine-tuning, and handle diverse linguistic styles and technical
jargon found in protocol documentation. These capabilities
make GPT-4 a strong candidate for vulnerability detection in
cellular protocols such as 5G.

In this research, we utilize GPT-4’s advanced natural lan-
guage understanding capabilities to identify procedural or
logical flaws, implementation-related issues, complex proto-
col violations, and cross-procedural vulnerabilities, directly
from 5G protocol specifications. We employ two methods
for vulnerability detection: a zero-shot approach, which ex-
clusively uses GPT-4’s pretrained knowledge, and a domain-
aware strategy for enhancing GPT-4’s contextual understand-
ing and adversarial reasoning by integrating structured security
knowledge, including security properties, hazard indicators,
and reasoning patterns derived from prior research on cellular
protocol vulnerabilities [3], [6], [7], [11], [25]–[27]. Using
the zero-shot approach, we have identified 24 potential vul-
nerabilities, with 12 being new findings. The domain-aware
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approach has revealed 23 potential vulnerabilities, of which 15
are novel. Altogether, we have found 20 previously reported
vulnerabilities and 27 new issues. These vulnerabilities include
authentication issues, security flaws, implementation flaws,
ambiguities in standards, resource mismanagement, phishing
attacks, and replay attacks. The identification of existing vul-
nerabilities establishes the credibility of our approach, while
discovering new vulnerabilities demonstrates the capability
to uncover novel security risks. We have simulated 14 of
these vulnerabilities using Open5GS and UERANSIM, and
confirmed the presence of nine, including five new.

The major contributions of our work are as follows.
• Novel vulnerability detection method. By combining

GPT-4’s advanced contextual understanding with domain-
specific insights from related works through effective
prompt engineering, we present an innovative black box
testing approach for vulnerability detection in 5G.

• A scalable, lightweight solution. Our method does not
require large-scale dataset or costly fine-tuning, making it
scalable across different protocols and applications where
white-box fine-tuning is not an option.

• Innovative task-specific prompt engineering. We provide
detailed illustrations of task-specific prompt engineering,
showing how domain context, few-shot examples, and
chain-of-thought reasoning can be applied effectively to
sophisticated tasks such as detecting 5G vulnerabilities.

• Software simulation. We validate our findings through
testing in a simulation environment. We also discuss an
array of simulation techniques, offering an alternative
method when hardware testing is not feasible.

The rest of the paper is organized as follows. Section II
provides background knowledge on our research. In sec-
tion III we discuss existing works on detecting vulnerabilities
in cellular protocols. Section IV explains our methodology
for vulnerability detection and test-case generation, test-case
filtering, and simulation. In section V we present the findings
from our experiment in detail and compare our findings against
other related works and white-box fine-tuning approaches.
In section VI we discuss the effectiveness of our approach
and some limitations. Section VII concludes this paper and
provides direction on future work.

II. BACKGROUND

In this section we discuss the basic concepts of 5G network
architecture, NAS layer procedures, and prompt engineering
techniques relevant to our work.

A. 5G Network Architecture

Fig. 1: Simplified 5G Architecture [6]

The 5G network architecture comprises of three main com-
ponents: User Equipment (UE), 5G Radio Access Network
(5G-RAN), and 5G Core Network (5G-CN), as shown in
Fig. 1.
UE: The UE includes devices like smartphones, tablets, and
IoT devices that connect to the 5G network. Each UE contains
a non-access stratum (NAS) for managing connection and
mobility states with the 5G-CN.
5G-RAN: The 5G-RAN facilitates wireless communication
between UEs and the core network. Its primary component
is the gNodeB (gNB), which serves as the base station
responsible for managing the radio interface, resources, and
connectivity.
5G-CN: The 5G core network adopts a service-based ar-
chitecture to allow network functions to offer services to
each other. Key components include the Access and Mo-
bility Management Function (AMF), which manages user
access, mobility, and authentication; the Authentication Server
Function (AUSF), responsible for handling the authentication
of user devices; the Session Management Function (SMF),
which manages session establishment, IP address allocation,
and other service policies; and the Unified Data Management
(UDM), which manages user subscription data and profiles.

The Non-Access Stratum (NAS) layer manages signaling
and communication between UEs and the core network for
session management, mobility management, and security. The
Radio Resource Control (RRC) layer oversees radio bearer
configurations, admission control, mobility measurements, and
dynamic resource allocation over secure channels.

B. NAS Layer Procedures

Here we briefly discuss some NAS layer procedures that are
relevant to our work.

Authentication and Key Agreement (AKA): AUSF gen-
erates an authentication token (AUTN). A long-term secret
key (K) that is shared between the UE and the network.
Along with the AUTN, a random number (RAND) and an
expected response (XRES) are also generated. The network
sends AUTN and RAND to the UE. The UE first validates the
received AUTN and then computes a response (RES) based on
the received RAND and the long-term key (K). The UE sends
the RES back to the network. The network then compares this
received RES with the expected response (XRES) it generated
initially. If RES matches XRES, it confirms the UE’s identity
and the authentication is considered successful.

Registration: The UE initiates a connection with the 5G
network by sending a registration request to the AMF, which
includes its Subscription Permanent Identifier (SUPI). The
AMF assigns a 5G-Globally Unique Temporary Identifier
(GUTI) and updates the UE’s location in the UDM for mobility
management.

Deregistration: Deregistration can be triggered by either
the UE (e.g., when turned off) or the network. The UE
sends a Deregistration Request to the AMF, which updates
the network’s records and releases associated resources. If the
UE is inactive, the network may also initiate deregistration to
free up resources and maintain efficiency.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3586480

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bangladesh Univ of Engineering and Technology. Downloaded on July 09,2025 at 02:34:33 UTC from IEEE Xplore.  Restrictions apply. 



3

Security Mode Control: After the UE is authenticated,
the AMF initiates the Security Mode Command, specifying
the algorithms for encryption (e.g., 128-NEA2) and integrity
protection (e.g., 128-NIA2). The UE responds with a Security
Mode Complete message if it successfully configures the secu-
rity settings. This procedure ensures that all subsequent NAS
messages are protected against eavesdropping and tampering.

Configuration Update: To update the UE with new con-
figuration settings such as Tracking Area Identity (TAI) or
network slice information, the AMF sends a Configuration
Update Command to the UE, which may include updated
parameters like TAI lists or changes in session management
parameters. The UE applies these updates and responds with a
Configuration Update Complete message. This keeps the UE
synchronized with the network’s parameters, ensuring efficient
mobility and service management.

C. Prompt Engineering Techniques

Prompt engineering means creating prompts that are specifi-
cally designed to guide an LLM towards generating the desired
output. It improves model performance by providing clear
instructions, context, and constraints. Recent works [28]–[31]
have introduced various techniques to improve LLM responses
for specialized tasks.

Zero-Shot Approach: This approach prompts the LLM to
perform a task without any examples, relying solely on its
pretrained knowledge and reasoning capabilities [28]. It is
particularly useful for evaluating the model’s baseline under-
standing of new domains or instructions.

Few-Shot Learning: Brown et al. [29] demonstrated the
effectiveness of providing the LLM with a handful of input-
output examples, to help it understand the underlying structure
and intent of the task and the pattern of expected response. It
is particularly helpful in non-trivial domain specific tasks.

Chain of Thought Prompting: Introduced by Wei et
al. [30], this technique encourages the LLM to reveal its
intermediate reasoning steps before producing a final answer.
This decomposition allows the model to perform multi-step
logical inference, improving performance on tasks requiring
complex reasoning or rule-based interpretation.

Majority Voting: Wang et al. [31] demonstrated that se-
lecting the most frequently occurring answer among sampled
reasoning paths significantly improves accuracy. In essence,
recurrence indicates correctness in model-generated outputs.

III. RELATED WORKS

Related works in 5G vulnerability detection can be cate-
gorized into traditional methods, machine learning and NLP-
based models, fuzzing techniques, and LLM-based security
testing. While these methods have been effective to varying
degrees, they have certain limitations. In this section, we
discuss these approaches, their limitations, and how we address
them. Table I provides a summary.

Formal verification: These approaches [2]–[4], [6] extract
FSMs from protocol specifications for rigorous analysis to
detect vulnerabilities. These methods are time consuming,
require extensive manual effort, and have limited scalability.

They often depend on pre-defined attack vectors and miss
dynamic threats. In comparison, 5GPT dynamically analyzes
protocol documentation using domain-aware prompt engi-
neering techniques, which is faster, scalable, adaptable, and
eliminates the need for extensive human effort.

ML and NLP-based models: ML-based models [8]–[10]
are trained on large datasets to identify patterns, anomalies,
and new attack vectors in cellular protocols. Chen et al. [11]
use ML and NLP to scan LTE documentation for Hazard
Indicators (HIs), while Pacheco et al. [27] and Ishtiaq et
al. [12] use NLP to automatically generate FSMs from RFC
documents and 5G specifications. These models require large
labeled datasets, frequent retraining to adapt to evolving
threats, and high compute power. Additionally, custom NLP
models often struggle with diverse technical jargon found
in technical documents like LTE and 5G specifications. In
contrast, 5GPT operates purely through domain-aware prompt
engineering, allowing it to dynamically adapt to new security
contexts without costly training or fine-tuning.

Fuzz testing: Fuzzing techniques [9], [13], [14], [26], [32]
generate and test numerous inputs to uncover unexpected
flaws, which is powerful but inefficient. It requires mas-
sive input mutations to find vulnerabilities, leading to high
computational costs but low precision. 5GPT overcomes this
limitation by using domain-aware reasoning to prioritize high-
risk test cases, which is more precise than blindly mutating
inputs and significantly reduces computational overhead.

LLM-based security testing: Recent works have explored
the use of LLMs in security testing. Zhang et al. [16]
demonstrated ChatGPT’s ability to generate security tests for
applications primarily through code-level analysis. Wang et
al. [17] provide a broader survey of LLM applications in
software security testing, covering unit test generation [20],
fuzz testing [19], penetration testing [21], bug analysis [22],
automated debugging and program repair [23], [24]. However,
most of these works focus on code-level security testing, with
only two works [18], [19] exploring natural language-based
security analysis. LLMs applied to source code benefit from its
structured nature, where vulnerabilities can be explicitly traced
to specific functions, unhandled conditions, or faulty logic. In
contrast, our work, 5GPT, detects vulnerabilities directly from
the complex and highly technical 5G specifications, where
security flaws emerge from semantic ambiguities, procedural
inconsistencies, and implicit security requirements rather than
explicit code-level defects.

White-box testing: White-box fine-tuning approaches have
shown impressive results in vulnerability detection [17], [22]–
[24], especially when there is access to source code, exe-
cution traces, or detailed bug reports. However, our black-
box approach is designed for situations where that is not an
option—such as proprietary systems, closed-source telecoms
infrastructure, or protocol-level security assessments. 5GPT
is able to uncover meaningful vulnerabilities without access
to proprietary code or extensive fine-tuning, making it more
scalable than white-box models and a practical choice for
security evaluation of cellular protocols like 5G.
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TABLE I: Comparison between Existing Vulnerability Detection Approaches and 5GPT

Categories Related
Works Identified Limitations How 5GPT Addresses These Limitations

Traditional
and Formal
Methods

[2]–[4],
[6], [7]

Labor-intensive and time-consuming; requires expert
knowledge; limited scalability; often predefined attack
vectors, missing dynamic threats

Automated and scalable analysis; reduces dependency on
manual effort and domain expertise; adapts dynamically to a
wider range of vulnerabilities without predefined constraints

ML and
NLP-based
Models

[8]–[12],
[27]

Scarcity of labeled data for training; high compute
requirement; difficulty of interpreting results; struggle
with diverse technical jargon; need frequent updates

No need for huge dataset or training; better technical under-
standing of GPT-4; CoT reasoning for better interpretation;
dynamically adapts to new data without reprogramming

Fuzzing
Techniques

[9], [13],
[14], [26]

Resource-intensive but inefficient; difficulty in model-
ing complex and nuanced 5G protocols precisely

Domain-aware reasoning for identifying precise high-risk
scenarios rather than blind input mutation

LLM-based
Techniques [16]–[24]

Requires implementation level details; mostly white
box; mainly focused on test case generation from code
level analysis rather than natural language analysis

Detects vulnerability directly from protocol specifications,
without source code access; black box testing; more scalable
and accessible; empirical validation

IV. PROPOSED APPROACH

In this work we have used GPT-4 for automated vulner-
ability detection from 5G protocols, integrating the natural
language understanding capabilities of LLMs with structured
prompt engineering. The end-to-end workflow can be divided
into three key steps. First, we have used GPT-4 for iden-
tifying potential vulnerabilities from the 5G specifications
and generating comprehensive test-cases. Afterwards, we have
applied a filtering process to eliminate the unreliable or in-
consistent vulnerability suggestions while retaining those that
demonstrate strong logical reasoning. Finally, the identified
potential vulnerabilities are tested in a simulation environment
to confirm or refute their existence. In this section we describe
each process in detail.

A. Vulnerability Detection & Test-case Generation

This is the key step of our approach, where we identify
potential vulnerabilities from input specification. We have
provided GPT-4 with the 5G-NAS specification document,
3GPP TS 24.501 version 17.9.0 Release 17 [1], focusing
on the Elementary procedures for 5GS mobility management,
including authentication, security mode control, identification,
configuration update, and network-slicing. This section has
around 350 pages, which we have divided into smaller sub-
sections. In each iteration, we have extracted the relevant
specification subsection and provided it to GPT-4 to identify
potential vulnerabilities. For each vulnerability detected by
GPT-4, we have also instructed it to generate a concrete
test-case in a predefined format. We have used two distinct
approaches for detecting vulnerabilities: a zero-shot approach
and a domain-aware strategy.

Predefined Test-case Format

Actors: Entities involved in the scenario (e.g., UE, AMF, gNB)
State of Actors: Initial condition of the actors before the event occurs
Event: The main action or sequence of actions being tested (e.g., message
exchange, n/w request, state transition, handover)
• Message: Request/command sent during the event
• Direction: Uplink (UE −→ AMF) or downlink (AMF −→ UE)
• Parameters: Relevant fields or attributes of the message
Expected behaviour: Normal outcome of the event if no vulnerability
Vulnerability: The potential vulnerability identified, along with an explana-
tion of why it is considered a vulnerability and how it may occur

Zero-Shot Approach: In this approach we have provided
GPT-4 with only the document and the test-case format, as

shown in Fig. 2. We have not provided any further guidance or
details about the document. This kind of prompting technique
is called zero-shot prompting [28]. The goal of this approach
is to understand the basic capabilities of GPT-4 in detecting
vulnerabilities, in the absence of any other domain-specific
insight or information. First we have asked GPT-4 to read
the document and provide a summary. This is done to make
sure that GPT-4’s NLP abilities are sufficient for understanding
the intricate details of the complex 5G specifications. After-
wards, we have asked GPT-4 to find vulnerabilities in the 5G
specifications and to generate test-cases to confirm or reject
the presence of the corresponding vulnerability, based on the
provided format. A condensed version of the prompt used for
this task is shown below.

Zero-shot prompt example

System: You are a security analyst trained to detect vulnerabilities in 5G
protocol specifications. Your task is to identify any potential vulnerabilities
based on the specification and generate structured test-cases accordingly.
User: Analyze the following 5G specification, identify all possible vulnerabil-
ities, and generate structured test-cases.
Input:
• 5G Specification: {5G spec snippet}
• Test-Case Format: {test case format}
Task:
• Carefully read and analyze the provided 5G specification section.
• Identify and describe any potential vulnerabilities indicated by the proce-

dure.
• For each identified vulnerability, generate a detailed test-case strictly

following the provided test-case format.
• Ensure test-cases are specific, comprehensive, and actionable.
Output: Return a structured list of test-cases adhering to the given format.

The zero-shot approach offers a practical way to utilize
the model’s extensive pretrained knowledge without requiring
additional fine-tuning or curated example sets [33]. An LLM
like GPT-4 has already seen and internalized vast amounts of
knowledge regarding general security, protocol, and telecom-
munications during its initial training, including how vulner-
abilities are typically classified, what factors contribute to
severity, how exploitation scenarios might look, and so forth.
As a result, GPT-4 has a generalized understanding of security
issues from the large corpus it was trained on [16]–[18], [22],
[23]. When GPT-4 reads the 5G protocol specification, it looks
for patterns that typically correlate with known classes of secu-
rity problems. GPT-4 can also reason about attack feasibility,
based on attack prerequisites, plausibility of execution steps,
and lack of security mechanisms in favour of the attack. While
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Fig. 2: Zero-shot approach

this is not empirical testing, it helps classify vulnerabilities
as low, medium, or high risk by estimating how easy they
are to exploit and what their theoretical impact could be.
Moreover, through its generative capabilities, the model can
also combine these patterns in a new context, allowing it
to hypothesize novel vulnerabilities or variations on existing
attacks that may not have been explicitly documented before.
This can potentially result in some false positives, which is
why these outputs should be carefully validated.

Domain-Aware Approach: The goal of this approach is
to identify sophisticated vulnerabilities that require contextual
knowledge. To achieve this, we have incorporated insights
prior works [2], [3], [6], [7], [11], [26], [27] within this
domain, as Fig. 3 highlights. Specifically, our domain-aware
framework utilizes two well-established techniques. The first
involves defining a set of security properties (SPs) – violations
of which can be linked to possible vulnerabilities. The second
technique leverages hazard indicators (HIs), which are key
phrases or conditions that have historically been associated
with security risks. To implement this, first we use few-shot
learning to ‘teach’ GPT-4 about SPs and identify HIs through
relevant examples, so that it can extract and identify them
from 5G specifications. Afterwards, we use CoT reasoning to
analyze whether a given SP is violated in the specification, or
if an HI can be exploited in adversarial context – thus linking
them to possible vulnerabilities.
Using SPEC5G as specification: The SPEC5G dataset [25]
contains expert-annotated security-related sentences from the
5G specification. We have extracted these security-related
sentences and grouped them based on contextual similarity to
maintain the integrity of the information as presented in the
original specification. We have used the SentenceTransformer
library with the all-MiniLM-L6-v2 model to compute
dense vector embeddings for each sentence and measure
cosine similarity between consecutive sentence pairs only. A
high similarity score indicates a strong semantic relationship,
suggesting that the sentences belong to the same context.
We have empirically established a similarity threshold of
0.7 to distinguish between related and unrelated contexts.
The grouping process is performed in a sequential, pairwise
manner: at each step, we compare sentence pairs (Si−1, Si).
If the similarity between them exceeds the threshold, Si is
appended to the current context group. Otherwise, the current
group is closed, and Si begins a new group. In this way,
we propagate context through pairwise chaining of adjacent
sentences while avoiding duplication or distortion from group-
level embedding aggregation.

After this preprocessing, SPEC5G serves as a security-

oriented subset of the original 5G specification developed by
3GPP, that can be used in its place. Crucially, the size of
this dataset is such that it can fit within GPT-4’s context
window, eliminating the need for segmenting it into smaller
parts. During experimentation, we have used both the origi-
nal specification and the SPEC5G dataset independently for
vulnerability detection and compared the results.

TABLE II: 5G Security Properties and Hazard Indicators

Security Property Hazard Indicator

Protection of Sensitive
Subscriber Information

Using stale ngKSI values

UE Identity confidentiality Resynchronization on same RAND
without re-authentication

Seamless security state
transitions

Initiation of EAP-AKA’ without
valid SNN matching

Protection against replay attacks Processing AUTHENTICATION
REJECT without active timers

Ensuring integrity and
confidentiality of NAS signalling

Non-delivery of NAS PDU due to
handover

Proper handling of invalid or
malformed messages

Inclusion of PEI instead of SUCI
for emergency services

Network slice isolation Using previously assigned
5G-GUTIs from foreign PLMNs

Protection of user plane integrity Aborting registration upon request
before completion

Management of temporary
identities

Policy-driven rejection without
standard cause

Protection against cross-layer
attacks

Using null integrity and ciphering
algorithms (5G-IA0 / 5G-EA0)

Resilience against service
downgrade attacks

Transmission failure handling left to
UE implementation

Defining 5G Security Properties: Security properties refer
to specific conditions or rules that a system must satisfy to
ensure its security. Recent works [2], [6], [26] have shown
the effectiveness of defining security properties from protocol
specifications that can be used to test LTE and 5G protocols’
adherence to security and privacy standards. We improve on
these manual approaches by using GPT-4 to autonomously
define security properties from 5G specifications, reducing
reliance on human expertise. An issue here is that while GPT-4
has broad security knowledge, it does not inherently recognize
which properties are critical for assessing protocol security.
This is why we use few-shot learning, where we provide GPT-
4 with examples of security properties identified in LTE [2],
[26]. By learning from these examples, GPT-4 is able to
generate relevant security properties for 5G that align with
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established expert-driven methodologies. Some of the security
properties are mentioned in Table II.

Detecting property violations: After generating the security
properties, our model must determine whether there are scenar-
ios in the specification where these properties may be violated.
For this assessment, GPT-4 needs to reason about how specific
behaviors, procedures, or omissions in the specification could
lead to concrete violations of these properties. This is achieved
through chain-of-thought (CoT) prompting, in which GPT-4 is
guided to break down its reasoning process into a sequence of
logical steps. Without CoT, GPT-4 is forced to make a single-
shot judgment, often relying on shallow pattern matching
using keywords rather than structured analysis. In contrast,
CoT prompting enhances GPT-4’s reasoning capabilities by
enabling it to examine the specified behavior in relation
to the intended security property, consider relevant security
mechanisms, identify possible attack vectors, and evaluate the
conditions under which a violation could occur—much like
a human security analyst tracing through system interactions
and edge cases. This structured reasoning is especially helpful
in detecting violations that are not explicitly stated in the
specification but instead arise from subtle procedural or multi-
entity interactions (e.g., mishandling security context during
state transitions or inter-system handovers). Some of the HIs
are mentioned in Table II. To illustrate this process, we have
provide an example CoT prompt. We have also provided a
sample GPT-4 response to CoT prompting, given the specifica-
tion snippet “During inter-system handover, the UE continues
using its existing NAS security context. Re-establishment of the
security context is not mandatory unless explicitly triggered”
and security property “Seamless Security State Transitions —
The integrity and confidentiality of signaling and user data
must be preserved during transitions.”

CoT prompt example to detect property violation

System: You are a 5G security analyst. Your job is to identify whether any
of the listed security properties are violated by a behavior described in 5G
spec. Think step-by-step like a security expert: understand each property,
analyze the behavior described in the specification, and determine whether
any violations occur.
User: Analyze the following 5G spec snippet against the list of security
properties. For each property, determine whether a violation occurs, explain
why or why not, and conclude whether it links to a possible vulnerability.
Input:
• 5G Specification: {5G spec snippet}
• Security Properties: {security properties list}
Reasoning: For each security property:
1) Explain the intended behavior according to the property.
2) Analyze how the specification behavior compares to this intended behav-

ior.
3) Identify any circumstances under which the behavior could violate the

property (e.g., replay, downgrade, desynchronization).
4) Conclude whether the property is upheld or violated.
Conclusion: For each property, clearly state whether it can be violated with
justification. If yes, indicate whether any vulnerabilities may arise in real-
world scenario.

GPT-4 response to CoT prompting (condensed)

1) Expected Behavior: Security context should be validated during inter-
system handover to ensure confidentiality and integrity.

2) Specification Behavior: Allows continued use of existing NAS context
without mandatory re-validation unless explicitly triggered.

3) Risk: Potential vulnerability if a stale or compromised context is
reused—may enable replay or downgrade attacks.

4) Analysis: Lack of enforced validation may allow context desynchroniza-
tion or reuse across RATs.

Conclusion: The specification likely violates the Seamless Security State
Transitions property by not requiring security context validation during han-
dovers, introducing a vulnerability window.

Finding Hazard Indicators: Hazard indicators (HIs) are
phrases or conditions that suggest a potential exploitation
point, such as unexpected behaviors triggered by specific
events or operations that should be aborted under certain con-
ditions. Bookworm Game [11] uses NLP and machine learning
to scan LTE documentation for explicit hazard indicators, but
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it often struggles to capture implicit or context-dependent cues.
In contrast, GPT-4’s advanced language understanding enables
it to interpret nuanced and implicit information across multiple
sentences, making it capable of detecting vulnerabilities that
tools like Atomic might miss. To incorporate this capability
into our workflow, first we have provided GPT-4 with exam-
ples of how specific HIs led to security flaws in LTE. Through
few-shot prompting, GPT-4 learns how certain operations can
introduce security issues in adversarial context and is able to
identify relevant HIs from 5G specification. Following is an
example few-shot prompt used for this task.

Few-shot prompt example for Hazard Indicators

System: You are a security analyst trained to detect hazard indicators
(HIs) in 5G protocol specifications. A hazard indicator is an action, trigger,
or condition that may, under certain circumstances, introduce a potential
security risk. Your task is to identify all potential hazard indicators in the
given spec based on the surrounding context.
User: Learn from the following examples to identify HIs and explain their
significance using context from the 5G specification.
Example 1:
• Hazard Indicator: Modify Bearer Context
• 5G Specification: {spec excerpt 1}
• Reasoning: Modification after state change may cause session desyn-

chronization if not validated.
Example 2:
• Hazard Indicator: Abort NR Procedure
• 5G Specification: {spec excerpt 2}
• Aborting without authentication recheck could allow bypassing protocol

state enforcement.
Input: 5G Specification: {5G spec section}
Task: Identify all hazard indicators mentioned or implied in the given specifi-
cation and justify their relevance.

Identifying HI exploitation: After finding a hazard indicator
(HI), GPT-4 is guided through CoT prompting to assess
whether the HI can be exploited in an adversarial context. First
GPT-4 interprets the specification to determine the expected or
normal behavior surrounding the HI. It then reasons about how
this behavior might be manipulated or triggered under abnor-
mal or malicious conditions. Specifically, it analyzes whether
there exist exploitable conditions under which an attacker
could use the HI to subvert expected protocol behavior – for
example, by inducing premature state transitions, bypassing
integrity checks, or misusing abort/retry mechanisms. If GPT-
4 concludes that such exploitation is plausible in a real-world
scenario, the HI is linked to a concrete vulnerability, and a
corresponding test-case is generated.

B. Test-case Filtering

After the test-cases are generated, they undergo a filtering
process so that only the promising test-cases (the ones that are
most likely to highlight a vulnerability) remain. This process
is two-tiered - consensus-based filtering and manual filtering.

Consensus-based Filtering: It is similar to majority voting,
where the recurrence of test-cases across various iterations is
regarded as an indicator of their potential validity [31]. GPT-
4’s reasoning is based on statistical association and its own
assessment of severity and relevance. So, if a case appears
in multiple iterations, it implies that GPT-4 considers it to
be a high-severity issue; and if it does not, it suggests that
GPT-4 does not internally prioritize it as an important security

concern. We consider these outliers to be erroneous suggestion
resulting from GPT-4 misunderstanding a part of the specifi-
cation due to ambiguity or associating a concept incorrectly
with a known vulnerability pattern, which is why they are
filtered out. Additionally, if a vulnerability recurs but with
minor differences in wording, details, or test-case formulation,
the filtering process extracts the core overlapping issue and
refines the test case accordingly. For example, we got multiple
versions of replay attack but with different scenarios (SMC,
authentication, SCTP), which were merged into a generalized
issue covering all scenarios.

Manual Filtering: Consensus filtering alone does not guar-
antee the semantic or contextual correctness of a test case.
After a test-case has passed consensus filtering, we manually
review it to ensure clarity, logical consistency, and adherence
to domain-specific requirements. Test-cases are deemed un-
clear if they contain ambiguous descriptions (e.g., ‘missing
proper verification’ - unclear what kind of verification) or lack
sufficient detail about states , transitions, or message flows.
Test-cases are considered redundant if they overlap in purpose
or scope with other cases already retained. Finally, test-cases
based on invalid or inaccurate assumptions are also excluded.
For example, if a test-case assumes unauthorized access to
the ngKSI but it was previously found to be impossible, it
is considered unpromising and discarded. CoT prompting is
particularly effective in this process. When GPT-4 provides
step-by-step reasoning, we can follow the logical sequence
to see exactly how each step connects the specification to a
possible SP violation or HI exploitation, making it easier to
determine whether the reasoning is sound. If there are logical
inconsistencies (one step of sequence does not entail another),
we discard the identified vulnerability.

We note that manual filtering can be a limitation in terms
of scalability. However, we deemed it necessary in this work
for a reliable evaluation of GPT-4’s capability to identify
vulnerabilities from complex cellular protocols, which we
think has not been explored in detail. Once LLMs like GPT-4
or further advanced models demonstrate reliable consistency
in this domain, this process can be automated by fine-tuning
language models on labeled data.

C. Test-case Simulation

Simulation using Open5GS and UERANSIM: We used
Open5GS to simulate the 5G core network and UERANSIM
to simulate the user equipment (UE) and gNB. The Open5GS
(v2.7.0) setup remained unchanged, running with its default
configuration, including MongoDB for database management
and Node.js for web-based administration. In UERANSIM,
we modified the gNB configuration to use specific IPs:
127.x.x.101 for Radio Link Simulation, 127.x.x.100
for the N2 interface (NGAP), and 127.x.x.200 for the
N3 interface (GTP-U). The gNB connected to the AMF
at 127.x.x.5 on port 38412. A single S-NSSAI slice
(sst : 1) was defined, and SCTP stream number errors were
ignored for better compatibility. For the UE, we kept the
default UERANSIM (v3.2.6) settings, except for updating
the gNB search list to 127.x.x.101 to match the gNB.
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We updated the IMSI of every UE after registering through
open5gs UI. It established an IPv4 PDU session with the APN
‘internet’ and used standard integrity and ciphering algorithms
for secure communication. While testing, we had to change
some of this base configuration. Here we discuss some of the
techniques used to simulate the test-cases.

1) Stopping Certain Responses: We have modified the
UERANSIM code to halt specific responses from the UE
to simulate the absence of certain network functionalities.
This helps in understanding the network’s behavior when
expected responses, such as REGISTRATION_COMPLETE,
are not received.

2) Sending Alternate Responses: Here we modify the
UERANSIM code to send alternate responses instead of the
expected ones, for example, SECURITY_MODE_REJECT in
place of REGISTRATION_COMPLETE. By doing so, we
simulate the injection of incorrect data into the network and
analyze its effects on network behavior and security.

3) Tampering with Expected Messages: We have tampered
some expected messages within the UERANSIM code to
evaluate the network’s ability to detect and handle message
tampering. For example, we modify one or two bits of the
message being sent. This experiment aims to uncover vulner-
abilities related to message integrity and authenticity.

4) Changing Encrypted Messages: By modifying encrypted
messages in the UERANSIM code, we assess the network’s
susceptibility to message interception and alteration, which can
potentially lead to severe security breaches and unauthorized
access to the network. This experiment sheds light on encryp-
tion vulnerabilities within the 5G network.

5) Disabling Certain Timers: In some cases we disable
specific timers in the UERANSIM code, to evaluate the
network’s ability to handle and recover from DoS attacks
without depending on the UE for defense mechanisms.

6) Requesting New Registration Before the Previous is
Complete: We introduce a new request before the previous
one is complete, to check whether it leads to a race condition
or network instability. For example, we stop the registration
response from being sent to the AMF and start a new regis-
tration request and observe how the AMF reacts to this.

7) Introducing Extra Variables: We introduce additional
variables to the UERANSIM code, such as additional MCC
and MNC variable, allowing us to toggle between them
dynamically at runtime. This experiment aims to identify
vulnerabilities related to dynamic variable handling within the
5G network.

8) Custom Function Implementation: In some cases we
implement custom functions within the UERANSIM code to
bypass encryption and other security checks. By doing so, we
assess the network’s vulnerability to sophisticated attacks and
the effectiveness of security protocols.

Simulation Using 5GReplay: To simulate replay attacks,
we have used ‘5GReplay’ [34], an open-source 5G network
traffic fuzzer. First we define some rules and configurations
to determine which packets will be modified, forwarded, or
dropped. For example, to simulate SMC replay attack, we
configure 5GReplay to detect the SMC messages sent by UE
and replay it twice to AMF. Then we check the AMF to verify

whether AMF has actually received the same packet twice. If
yes, the attack is successful. To simulate packet modification,
we modify the UE RAN identifier in the NGAP authentication
response and transmit it with the rest of the traffic. Afterwards,
we monitor the AMF log, UE terminal, and Wireshark to see
if any unusual activity has been detected by the network.

V. FINDINGS

In this section we present the findings of our experiments.
First we provide a summary of the findings from zero-shot
and domain-aware approach, including the impact of filtering
process on the final output. Then we discuss the results of our
simulation, including both true positives and false positives.
Finally, we present a quantitative comparison of our findings
with similar existing works.

A. Potential Vulnerabilities Identified

Zero-shot Findings: We have identified 25 potential vul-
nerabilities using the zero-shot approach. To the best of
our knowledge, 12 of these are new findings. Another 12
vulnerabilities have been previously identified in other works,
while one has been demonstrated to not exist in 5G. These
potential vulnerabilities are presented in Table III.
Effectiveness: Zero-shot approach is highly effective for
detecting high-level logical inconsistencies, weak validation
checks, misconfigurations, and ambiguous protocol rules.
• Logical and Procedural Flaws: One of GPT-4’s key

strengths is analyzing logical flows and detecting contra-
dictions, which is why it is effective in identifying inconsis-
tencies and misalignments like collision between different
commands, improper handling of requests (e.g. deregistra-
tion) in certain scenarios (e.g. ‘switch off indication).

• Validation and Integrity Issues: Since GPT-4 is well-
trained on common security principles, it is capable of
detecting patterns where requests (e.g. identity request) or
parameters (e.g. AT KDF) may not be properly authenti-
cated or verified.

• Misconfigurations and State Management Issues: GPT-4
is able to detect flaws in resource allocation, identifier
management, and session state handling, like inaccurate
updating of 5G-GUTI, mismanagement of truncated 5G-S-
TMSI configuration, etc.

• Ambiguous Guidelines: As GPT-4 is trained on diverse text
sources, it is effective at spotting vague or under-defined
rules in technical documentation, for example ambiguous
guidelines for SNPN-specific attempt counters, inaccurate
processing or storage of Disaster Condition PLMNs, etc.

Limitations: Without domain-specific context, GPT-4 lacks
the technical depth to identify advanced, low-level security
flaws such as cryptographic weaknesses, exploitable timing
and race condition attacks, network layer exploits (including
downgrade attacks), and particularly attacks that involve mul-
tiple states or entities.

Domain-aware Findings: Using the domain-aware ap-
proach, we have identified 24 potential vulnerabilities, includ-
ing 15 new discoveries according to our knowledge. Eight
vulnerabilities align with findings from previous works, while
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TABLE III: Summary of Zero-shot Findings

Potential Vulnerability Message/Command New/Existing
Authentication-related Issues

Failure to detect malicious authentication request with forged ngKSI EAP-authentication request Disproven [35]
Vulnerabilities in EAP message processing in network slice-specific authentication Slice-Specific Authentication Existing [36]
Exploiting lack of timer validation via repeated AUTH REJECT messages Authentication reject New
Insufficient or missing Serving Network Name (SNN) verification EAP-authentication challenge New
Lack of EAP-Request Validation (incorrect validation of AT KDF) EAP-authentication request New

Security Flaws
Vulnerabilities in EAP message processing in Network Slice-Specific authentication Slice-Specific Authentication Existing [37]
Incorrect NAS MAC calculation risking UL NAS Transport Existing [26]
Incomplete or malformed security mode commands Security mode command Existing in 4G [2]
Inadequate validation of identity request with malformed parameters Identity request Existing in 4G [2]
Inadequate handling of security mode reject command Security mode reject Existing in 4G [7]

Implementation Flaws
Improper handling of deregistration request with ‘switch off’ indication Deregistration request New
Lower layer failures leading to incorrect invalidation of old 5G-GUTIs and TAIs Config Update, deregistration request New
Collision between configuration update and deregistration request Config update, deregistration request New
Inability to detect transmission failures of configuration update complete message
during tracking area change

Config Update New

Improper handling of rejected NSSAI in mixed access scenarios NSSAI Config Update New
Inadequate handling of emergency services registration Config Update New
Routing failures in NAS 5GSM message transport DL NAS TRANSPORT New
Inaccurate processing or storage of Disaster Condition PLMNs Config Update New
Mismanagement of truncated 5G-S-TMSI configuration Config Update Existing [6]
SMF selection failure during PDU session establishment UL NAS Transport Existing [37]
Inadequate handling of security mode reject command Security mode reject Existing in 4G [7]
Inconsistent NSSAI parameters handling across different access types NSSAI config update Existing [37]
Inaccurate Updating of 5G-GUTI Config Update Existing [37]

Standards and Resource Management Issues
Ambiguous guidelines for SNPN-specific attempt counters in the specification Authentication reject New
Ineffective congestion control and resource allocation UL NAS Transport Existing [37]

one has been proven to not exist in 5G. Table IV summarizes
these findings. We have also mentioned which domain aware
technique was used to find a particular vulnerability and
whether 3GPP specification or SPEC5G was used as input.
Effectiveness: Since this approach benefits from techniques
such as property-directed analysis and hazard indicators iden-
tification from established literature, it is able to capture
sophisticated vulnerabilities that require a combination of deep
procedural understanding and adversarial thinking.

• Multi-State and Cross-Procedure Attacks: Domain-aware
GPT-4 is capable of evaluating how security properties
should persist across states and transitions, and which in-
teractions are linked with potential security breaches. As
a result, it is able to detect vulnerabilities when multiple
protocol steps interact, like security context mishandling
during state transitions or inter-state handovers, sequence
number mismanagement during disconnect requests, session
resumption without re-authentication, and so on.

• Cryptographic and Integrity Violations: Using security
property enforcement, GPT-4 is guided to check whether
messages that require cryptographic protection are actually
being secured, allowing it to uncover issues like replay
attacks, tampering with integrity-protected messages, or lack
of security mechanisms altogether.

• Message Spoofing and Injection: GPT-4 now has enough
contextual understanding to identify spoofing requests be-
fore or even after security activation, unauthorized message
injection, and rogue network service delivery risks.

• Privacy and Identity Exposure: By explicitly guiding

GPT-4 to focus on data confidentiality and identity protec-
tion, the approach ensures that user identity and sensitive
information leakage issues like SIP credentials interception
and SUPI exposure in plaintext.

• Network and Resource Management Exploits: Although
zero-shot approach also has this capability, domain-aware
strategies help GPT-4 identify advanced attack scenarios like
message flooding to overwhelm gNB and AMF, repeated
PDU session re-establishments etc.

Impact of SPEC5G: Among the 24 potential vulnerabil-
ities, 19 were identified using the 3GPP specification of 5G
while 11 were found using SPEC5G. SIX of them were found
using both. There are two key observations here. First, as we
discussed earlier, segmenting the full 3GPP specification into
smaller portions to fit them within GPT-4’s context window
risks losing contextual coherence. If a relevant passage or
prerequisite condition appears in a different segment than the
place where a particular vulnerability arises, GPT-4 will not be
able to detect it. In contrast, the SPEC5G dataset is a carefully
curated subset of the entire specification and contains security
related texts only, which fits within GPT-4’s context window.
This is why using SPEC5G we have found FIVE vulnerabil-
ities that were not found using the segmented specifications.
Second, while SPEC5G helps consolidate key security details,
it inevitably omits certain procedural, architectural, or corner-
case nuances that do not seem directly ‘security-related’ —
but still introduce vulnerabilities when taken in full context. In
other words, detecting some vulnerabilities requires the depth
of information found only in the original, larger specification.
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TABLE IV: Summary of Domain-aware Findings

Potential Vulnerability Message/Command Spec SP/HI New/Existing
Authentication-related Issues

Incorrect validation of authentication token Authentication request both SP Disproven [35]
Session resumption without re-authentication Service request 3GPP HI New
Unauthorized EAP Server Change during EAP-TTLS authentication EAP-request/response 3GPP HI New
Accepting service from rogue networks without proper authentication Unauthenticated service delivery 3GPP SP New

Privacy/Phishing Attacks
SIP credentials exposure via REGISTER requests Integrity protected SIP register SPEC5G SP New
SUPI exposure in clear text during transmission Authentication or reg request both SP Existing [6]
Inadequate SUCI handling during initial registration Registration request 3GPP SP Existing [38]
IP-SM-GW short message spoofing SIP message request SPEC5G HI New

Security Flaws
Spoofing RRC connection request before security activation RRC connection request both SP New
Spoofing NAS attach request after security activation NAS attach request (plain) both SP New
Tampering Integrity-Protected Message with Valid Sequence Number Integrity protected NAS message SPEC5G SP New
Misuse of access barring (e.g. by manipulating network signals) to
trigger false local deregistration

Connection release command with
access barring conditions

3GPP HI New

Reusing previously assigned GUTIs without context validation Deregistration request 3GPP HI New
Null security for messages that should be security protected NAS message SPEC5G SP Existing [6]
Unauthorized access to paging procedures Paging request 3GPP SP Existing [6]
NAS Signalling Spoofing via duplicate TEID values in GTP-U header NAS messages SPEC5G HI Existing [37]
Injection of malicious NAS messages into protected sessions NAS messages 3GPP SP Existing [35]

Implementation Flaws
Mishandling security contexts during state transitions Handover command 3GPP HI New
Mishandling security contexts during inter-system handovers Handover command 3GPP HI New
Sequence number mismanagement in PDN disconnect request PDN disconnect request both SP New
CAG information list mismanagement Deregistration request 3GPP HI Existing [12]

Resource Management and Replay Attacks
NAS message flooding to overwhelm gNB and AMF RM NAS messages (plain/protected) 3GPP SP Existing [39]
DoS via Timer T3560 expiry handling in burst message attacks Authentication request 3GPP HI New
Replaying old security protected messages Replayed protected messages both SP New

TABLE V: An ablation study of CoT-reasoning

HI Output without CoT Output with CoT
Initiation of EAP-
AKA’ without valid
SNN matching

Vulnerable. If SNN matching fails or is omitted, the UE
may derive keys based on incorrect domains, enabling
man-in-the-middle attacks on authentication.

Vulnerable. The SNN anchors trust in EAP-AKA’. If the UE skips this
check, a rogue base station could impersonate a legitimate network and
hijack authentication, leading to MITM or credential theft.

Processing auth reject
without active timers

Vulnerable. If auth reject is received without
T3516/T3520 running and is not integrity-protected,
the UE may discard it, allowing desynchronization or
access continuation in invalid state.

Depends on implementation. The spec mandates discarding such
messages if no timers are active. If a UE erroneously processes
unauthenticated messages without checking timers, an attacker could
trigger deregistration or blacklisting without cause.

Using stale ngKSI
values

If ngKSI is reused (5GMM Cause #71), a stale key
context may be activated, leading to key reuse and
opening doors for key replay and session hijacking.

If the UE accepts an ngKSI that was already used in an active
context, a replayed auth request could cause NAS context confusion.
Vulnerable only if UE does not implement 5GMM cause #71 rejection.

Emergency PDU ses-
sion use without au-
thentication

Vulnerable. When timer T3520 expires during emer-
gency sessions, the UE continues using current context
even if authentication fails—potentially exploitable for
maintaining sessions without auth.

Not vulnerable. Emergency PDU sessions are allowed by specification
to bypass authentication under strict conditions (e.g., user uncon-
scious). This is a trade-off, not a design flaw. Abuse is mitigated by
policy, timers, and network-side constraints (not UE).

Deletion of valid keys
upon receiving EAP-
success

Vulnerable. On EAP-success, the ME deletes previously
valid KAUF/KSEAF even if partial context was not
updated. If success is spoofed or injected, it causes
premature context removal and DoS.

Not vulnerable. Keys are only deleted after the UE has successfully
validated the EAP exchange and received an authenticated EAP-
success message. Forging such a message requires full control of the
network, which is infeasible for an external attacker.

As a result, we have found 13 vulnerabilities only using the
full 3GPP specification.

Impact of CoT-reasoning: In Table V, we compare GPT-4’s
reasoning on the exploitation of several authentication-related
Hazard Indicators (HIs), both with and without Chain-of-
Thought (CoT) prompting. Without CoT, GPT-4 mostly makes
single-shot decisions based on surface-level cues and keyword-
specific pattern matching, overlooking key protocol safeguards
or feasibility constraints. With CoT prompting, GPT-4 demon-
strates more structured and context-aware reasoning — ana-
lyzing the context surrounding an HI to determine whether it
can be exploited in real-world scenario.”

Impact of Filtering: As shown in Table VI, zero-shot
approach produced 46 test-cases, of which 33 passed the
consensus filtering. Out of these 33, 25 passed the manual
review. In domain-aware approach, 30 out of the 34 test-
cases passed consensus filtering, from which 24 passed manual
filtering. Consensus filtering eliminated 13 test-cases in zero-
shot and 4 in domain-aware, indicating that domain-aware test-
cases were more robust and consistent. 8 zero-shot test cases
were removed through manual review, with most rejections
due to missing details. 6 domain-aware test-cases were also
filtered out. In general, the zero-shot approach retained 54%
of its original test cases, while domain-aware retained 71%,
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TABLE VI: Impact of Consensus-based and Manual Filtering

Filtering Type
Zero-shot Approach Domain-aware Approach

Input Accepted Discarding reason Count Input Accepted Discarding reason Count

Consensus 46 33 Infrequent 13 34 30 Infrequent 4

Manual 33 25

Ambiguous 1

30 24

Ambiguous 1
Lacks detail 4 Lacks detail 2
Redundant 2 Redundant 2

Inaccurate assumption 1 Inaccurate assumption 1

suggesting that domain-aware strategies produce higher quality
and more contextually grounded test-cases.

B. Zero-shot Simulation Results

Among the 25 potential vulnerabilities we found using
the zero-shot approach, we have tested eight, and found the
presence of vulnerabilities in four cases (true positives). We
have been unable to detect the vulnerabilities in other 4
cases (false positives). The findings from our testing and their
impacts are presented below.

True Positives: A summary of the test-cases that yielded
vulnerabilities are presented in the Table VII. Now we briefly
discuss about these test-cases and their outcomes.

TABLE VII: Summary of Zero-shot True Positives

Sl Potential Vulnerability Our Findings

A1 Inadequate Handling of
sec mode reject (SMR)

If we send SMR before AMF has
completed registration, the UE still re-
mains operational (Should have been
de-registered)

A2 Improper Handling of
dereg request

Sending a dereg request with switch-
off indication results in irregularities

A3
SMF Selection Failure in
PDU Session Establish-
ment

Mismatched APN and SST-id halts
PDU Session to be created

A4
Inability to Detect
Transmission Failure
during TAI Change

If transmission failure occurs when
the device has moved to a new area,
the network does not re-initiate the
registration procedure

A1 Inadequate Handling of SECURITY MODE REJECT

During registration, when the AMF receives a SECURITY
MODE REJECT (SMR) message from the UE, it is expected
to immediately halt the ongoing procedure.
Vulnerability: If the AMF does not stop the ongoing registra-
tion process immediately and allows the process to continue,
it will lead to an incomplete security setup, leaving the
connection vulnerable to attacks.
Our Findings: After making the UE send an SMR during the
registration process, we have observed the following:
• As AMF was expecting REGISTRATION COMPLETE

message, it treats the SMR as ‘UNKNOWN MESSAGE’ and
does not stop the procedure.

• If we send SMR before REGISTRATION COMPLETE, UE
remains operational. Here, UE should have been deregis-
tered by AMF.

• If we send SMR only, UE becomes un-operational but keeps
switching between IDLE and CONNECTED states.

Impact: This vulnerability can be exploited in several ways:

• Bypassing Security Controls: An attacker can exploit this
vulnerability to maintain a connection with the network,
bypassing security measures that would be re-established
during the registration process. This can allow for continued
access to the network without proper security credentials.

• Impersonation and Session Hijacking: An attacker can
also exploit it to impersonate the UE. Since the AMF still
considers the UE registered, the attacker can send messages
pretending to be the UE, and gain access to ongoing sessions
and sensitive information. This can result in data theft,
unauthorized access to user accounts, and interception of
confidential communications.

A2 Improper Handling of DEREGISTRATION REQUEST
During the identification procedure, the 5G protocol specifies
that if a DEREGISTRATION REQUEST with a ‘switch
off’ indication is received, the process should be imme-
diately aborted. This measure ensures that the network can
promptly respond to potential security issues or user-initiated
requests, maintaining integrity and security of the network.
Vulnerability: Failure to correctly handle this request can
leave the network susceptible to malicious activities.
Our Findings: To simulate this, we have sent a normal
DEREGISTRATION REQUEST, and another one that in-
cludes a ‘switch off’ indication. On inspecting the AMF
logs in both cases, we have found dissimilarities. The invoked
deregistration (switch off indication) AMF log does not have
clear UE identification (no IMSI or SUCI mentioned initially),
contains errors regarding the identity type and the absence of
SUCI, and shows an unexpected sequence of events.
Impact: This vulnerability can have significant consequences.
• Identity Spoofing and Anonymity: The inability to prop-

erly identify UE can allow attackers to spoof UE identity
or to maintain anonymity while conducting malicious activ-
ities, thus evading detection.

• Security Breach: The identified irregularities and the net-
work’s failure to handle them correctly can be exploited by
attackers to bypass security measures, leading to unautho-
rized access and potential compromise of network security.

A3 SMF Selection Failure in PDU Session Establishment
During Packet Data Unit (PDU) session establishment, the
AMF is responsible for selecting a Session Management
Function (SMF) based on various criteria, including routing
contexts such as the Access Point Name (APN) or the Session
and Service Continuity (SSC) modes.
Vulnerability: If the AMF is unable to select an appropri-
ate SMF for PDU session establishment due to missing or
mismatched routing contexts, such as the APN or Service
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Selection Subscription Identifier (SST-id), it can prevent the
completion of the PDU session establishment process, render-
ing the UE unable to access intended services.
Our Findings: Our testing has revealed that when an APN
or SST-id that does not correspond with the Digital Network
Name (DNN) or SST-id configured in the OPEN5GS is used,
the AMF fails to establish the PDU session. Although the
UE successfully registers with the network, it remains un-
operational due to the inability to establish a PDU session.
This indicates a lack of robustness in handling routing context
mismatches, leading to service disruption for the end user.
Impact: The inability of the AMF to select an SMF and
establish a PDU session under certain conditions can lead
to disruption of services such as internet access and voice
communication, degradation in the quality of service, and
increased signaling traffic and network load.
A4 Inability to Detect Transmission Failure during TAI

Change
When a UE moves from one area to another, resulting in
a change of the Tracking Area Identity (TAI), it requires
an update to reflect the new location. This is done through
a CONFIGURATION UPDATE command. If this command
does not reach the AMF for any reason (such as a trans-
mission failure), the network should re-initiate the registration
procedure to ensure that the UE does not suffer from outdated
configuration settings or get disconnected.
Vulnerability: If the AMF does not re-initiate the registration
procedure, the UE will either get disconnected from the
network or be left with outdated settings.
Our Findings: When the TAI changes dynamically (on the
fly), the AMF does not re-initiate the registration procedure
and the UE is disconnected.
Impact: The failure to handle dynamic TAI changes and
transmission failures properly can have several impacts:
• Inaccurate UE Location Tracking: The network’s inability

to keep up with the UE’s current location can lead to
inaccuracies in location-based services or in the network’s
ability to efficiently manage resources.

• Service Disruption: Users may experience service dis-
ruptions or disconnections when moving across different
tracking areas, affecting their ability to use network services
seamlessly.
False Positives: We did not find vulnerabilities in four

cases, which are described below.
B1 Handling of Repeated Identity Requests
Supposed vulnerability: If the AMF allows repeated
IDENTITY REQUEST messages even after timer expiry, a
malicious actor can exploit this to launch a Denial of Service
(DoS) attack by sending a fake registration request but not
responding to AMF’s identity request.
Our Findings: To simulate this, we have stopped send-
ing response from the AMF so that the UE keeps sending
IDENTITY REQUESTs. AMF allows re-transmissions for
only as long as its timer allows, which is 5 times per request,
then the UE context is released; so a direct DoS attack is not
possible.
Implication: A single UE cannot directly cause a DoS due

to the AMF’s timer-based retransmission limits. However, it
may be possible to launch a DDoS (Distributed denial of
service) attack by sending numerous fake registration requests
from different sources. Each request triggers the AMF to
allocate resources and retry identity requests up to 5 times, so
continuous fake requests can overwhelm the AMF, potentially
leading to service disruption.
B2 Inadequate Handling of Emergency Registrations
Supposed vulnerability: If the AMF improperly sets the
registration result, it can lead to incorrect registration statuses,
potentially denying the UE access to non-emergency services.
Our Findings: To simulate this, we have established a connec-
tion using EMERGENCY status and another one as a normal
registration. On inspecting various status-related parameters,
we have found difference only in S-NSSAI parameters (which
is expected). There are no considerable irregularities.
Implication: The AMF correctly handles emergency service
registrations without any irregularities, ensuring that emer-
gency and non-emergency services are appropriately differ-
entiated based on S-NSSAI parameters.
B3 Collision with DEREGISTRATION REQUEST

Supposed vulnerability: If there is a CONFIGURATION
UPDATE COMMAND during deregistration, it can lead to con-
flicts in network registration state, causing service disruption
or incorrect network access.
Our Findings: To simulate this, we have configured the UE
to send a CONFIGURATION UPDATE COMMAND while the
deregistration process was ongoing. We have observed that UE
ignores the CONFIGURATION UPDATE COMMAND if there
is already a DEREGISTRATION REQUEST for the same
access type and so there is no collision.
Implication: The UE correctly prioritizes the ongoing deregis-
tration process by ignoring configuration updates for the same
access type, ensuring there are no conflicts in the network
registration state.
B4 Unauthorized Access to ngKSI
Supposed vulnerability: If the AMF does not properly vali-
date an AUTHENTICATION REQUEST with a forged ngKSI,
it can lead to unauthorized access to network resources.
Our Findings: To test this, we have configured the UE to
send an AUTHENTICATION REQUEST with a forged ngKSI
value. We have found that if the computed ngKSI value does
not match the received value, AMF immediately issues a
SECURITY MODE REJECT and deregisters the UE.
Implication: AMF is effective in preventing unauthorized
access through tampered ngKSI values.

C. Domain-aware Simulation Results

Among the 24 potential vulnerabilities found using this
approach, we have simulated six, and confirmed five vulnera-
bilities (true positives). We have not detected any vulnerability
in the remaining case (false positive).

True Positives: A summary of the domain-aware test-cases
that resulted in vulnerabilities are presented in the Table VIII.
Here we briefly discuss these vulnerabilities, our findings in
the simulation and the impacts.
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TABLE VIII: Summary of Domain-aware True Positives

Sl Potential Vulnerability Our Finding

C1
NAS Message Flooding
(Before and After Secu-
rity Activation)

It is possible to exhaust the resources
of the gNB by sending connection
requests from a large number of UEs

C2
Spoofing RRC connec-
tion request before secu-
rity activation

Spoofing a legitimate IMSI and con-
necting to AMF results in service loss
for both UEs

C3
Null Security for Mes-
sages that should be Se-
curity Protected

Open5GS lacks a proper security pro-
file, offering only null-security

C4
Tampering Messages
with Valid Sequence
Number

UE connects to AMF even with
tampered Registration payload (NAS
KSI)

C5 Replay Attack on Secu-
rity Protected Messages

Attack succeeds using lost or retrans-
mitted messages but alteration fails

C1 NAS Message Flooding (Before and After Security
Activation)

In a 5G network, the gNB is the primary point of radio
access, responsible for managing all radio communications
between the network and the UE. The AMF manages the
Non-Access Stratum (NAS) messages which include important
signaling between the UE and the core network, such as
session management and mobility management.
Vulnerability: By sending a large volume of NAS messages
from the UE to both the gNB and AMF, a coordinated DoS
attack can potentially deplete their computational and memory
resources. These messages can be both ‘plain’ (unencrypted
and unprotected) or ‘protected’ (encrypted and integrity-
protected).
Our Findings: To simulate this attack, we have used a
bash script to initiate simultaneous connection attempts from
numerous UEs with the same configuration file and IMSI
number. The gNB could not handle the volume of requests,
resulting in a segmentation fault in our simulated environment.
This suggests that the gNB does not track the number of
requests per UE; otherwise, it would likely restrict unusually
high numbers of connection attempts from a single UE.
Impact: The implication of these vulnerabilities are:
• gNB Resource Exhaustion: The gNB faces an immediate

resource drain due to the excessive number of connection
attempts, which can prevent it from handling legitimate user
connections effectively, leading to network-wide instability.

• AMF Resource Drainage: Similar to the gNB, the AMF
is tasked with processing a large volume of NAS messages,
further straining the network’s core resources and leading
to potential service degradation or failure. The mixture of
plain and protected messages can further complicate the
processing logic of the AMF, as it needs to handle both
types differently – decrypting and verifying integrity where
necessary.

C2 Spoofing RRC Connection Request Before Security
Activation

Before the activation of security measures, the gNB is expected
to verify the plausibility of incoming RRC connection requests
to prevent unauthorized access.
Vulnerability: If gNB does not verify the plausibility of
incoming RRC connection requests even before security is
activated, then a malicious actor can impersonate a legitimate

UE without needing to go through proper authentication
checks.
Our Findings: First we have established a connection using
a legitimate UE, then we have attempted to establish another
connection using the same (spoofed) IMSI of the legitimate
UE. Open5GS allowed the spoofed connection, but then re-
jected service for both UEs, citing the cause ‘UE IDENTITY
CANNOT BE DERIVED FROM NETWORK’. This allows an
attacker to deprive a legitimate UE of access by spoofing IMSI.
Impact: This vulnerability has several potential impacts:
• Denial of Service to Legitimate Users: By spoofing the

IMSI of a UE, attackers can cause the network to reject
services for legitimate users. For example, an attacker can
capture the IMSI of a UE and use it to send an RRC con-
nection request to the gNB. Since the gNB does not verify
the plausibility of the request before security activation, it
allows the connection but later rejects service for both the
legitimate and spoofed UEs, thus depriving the legitimate
user of network access.

• Security Bypass: The ability for attackers to initiate connec-
tions without proper authentication checks can be exploited
to bypass the network’s security mechanisms, allowing
unauthorized access to network resources and services.

C3 Null Security for Messages that should be Protected
In a secure 5G network, the AMF is responsible for ensuring
the integrity of data exchanged between the UE and the
network through robust encryption methods.
Vulnerability: If the AMF only implements null security
profile (no security), it will be unable to detect any tampering
of messages.
Our Findings: UERANSIM has three security profiles: Null-
security, Profile A (protection scheme 1), Profile B (protection
scheme 2). When we tried to simulate this test-case, we
could not establish a connection with AMF (Open5GS) using
profile-A. We could only connect using null-security profile;
suggesting that Open5GS may not have implemented proper
encapsulations. We have raised an issue regarding this in the
Open5GS GitHub and found that other users are facing it too.
Impact: The inability to establish a secure connection using
Profile A raises concerns about the overall reliability and
security of Open5GS-based systems. It can undermine trust in
Open5GS as a viable solution for 5G deployments, especially
for applications requiring stringent security standards.
C4 Tampering Messages with Valid Sequence Number
Messages which can affect the network state or user authen-
tication (e.g., Registration Request, Service Request) should
be both integrity protected and verified for sequence number
validity. This dual check ensures that the messages have not
been tampered with and are sent in the correct order, prevent-
ing replay attacks and ensuring the message’s authenticity and
integrity.
Vulnerability: If the AMF only verifies the sequence number
without ensuring the integrity of the message content, it
may accept tampered messages as legitimate. It can lead to
unauthorized access and manipulation of network functions.
Our Findings: To simulate this test-case, we have sent a
Registration Request to the AMF that had valid sequence
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number but tampered payload. Specifically, we have tampered
the NAS key set identifier (ngKSI). We have found that despite
this tampering, AMF still allows the UE to be connected.
Impact: This issue can have significant practical impacts.

• Impersonation: Attackers can impersonate legitimate users
by tampering with the ngKSI or other critical parameters.
For example, an attacker can capture a legitimate Registra-
tion Request, modify the ngKSI to match their own device’s
identifier, and send it to the AMF. If the AMF only verifies
the sequence number, it may allow the attacker’s device to
connect, mistaking it for the legitimate user.

• Session Hijacking: During an active session between a
legitimate user and the network, an attacker can send a
tampered Service Request with a valid sequence number
but modified payload. If the AMF accepts this tampered
message, the attacker can take over the session, potentially
accessing or altering sensitive communications.

C5 Replay Attack on Security Protected Messages
In 5G, encrypted messages can still be susceptible to re-
play attacks, where a malicious actor captures valid network
communication and re-transmits it later to attempt to gain
unauthorized access or disrupt operations.
Vulnerability: Lack of replay protection will allow old mes-
sages to be used in attacks.
Our Findings: We used 5GReplay to test replay attacks by
capturing network packets and either replacing the original
packet with an older one (drop-replay) or sending a modified
version of the original packet (forward-replay). The results
of these tests are summarized in Table IX. The drop-replay
attack succeeded for security mode control (SMC) messages
and sequence number modification. However, both of these
attacks failed when we tried to forward the modified messages,
evident by errors in AMF log and connection loss. Other
attacks, such as modification of SCTP parameters, malformed
NGAP procedure codes, and NAS fuzzing, also failed.
Implication: The success of drop-replay attacks suggests
weaknesses in 5G protocols in handling lost or retransmitted
messages. The failed attacks indicate strong integrity protec-
tion, sequence number validation, and cryptographic checks in
5G to reject altered packets. However, another factor to con-
sider here is that integrity protection and sequence validation
rely on timestamps, expected delays, and state synchroniza-
tion. A real-world adversary can exploit latencies, network
congestion or handover delays to time the replay attack more
effectively, which cannot be replicated in simulation.
Impact: Adversaries can exploit the vulnerability to retrans-
mission scenarios to bypass authentication or replay old secu-
rity commands under certain conditions.

False Positives: We have not found any vulnerability in one
case, which is discussed below.
Inaccurate Validation of Authentication Token
During authentication, the UE computes a response (RES)
based on a random number (RAND) received from the network
and sends it back to the AMF.
Supposed vulnerability: If a malicious UE generates a RES
with a fake or invalid RAND and sends it to the AMF, and
the AMF does not properly validate it, this can lead to serious

TABLE IX: Summary of Replay Attack Findings

Attack
Description

Packet
Type

Warning
or Error

UE-gNB
Connection
Status

Verdict

NAS-5G SMC
Replay Attack DROP NO Fruitful

Connection SUCCESS

NAS-5G SMC
Replay Attack FORWARD YES Connection

lost FAILED

Malformed
NGAP
procedure
code

BOTH YES Connection
lost FAILED

Modification
of SCTP
parameters

BOTH YES Connection
lost FAILED

UE Random
ID Generation BOTH YES Connection

lost FAILED

NAS
Sequence
Number
Modification

DROP NO Fruitful
Connection SUCCESS

NAS
Sequence
Number
Modification

FORWARD YES Connection
lost FAILED

NAS Custom
Fuzzer BOTH YES Connection

lost FAILED

issues like authentication bypassing and session hijacking.
Our Findings: To simulate this, after the UE receives AUTN
and RAND from the AMF, we have generated a RES using a
fake RAND. Upon receiving this forged RES, AMF sends an
AUTHENTICATION REJECT and terminates the process.
Implication: AMF effectively prevents any attempt of authen-
tication bypass using fake RES values. Nonetheless, another
way of carrying out this attack is to use an old but valid RAND
value, which the AMF might not properly keep track of. This
case has not been covered in our simulation.

D. Comparison with Existing Works

TABLE X: Comparing 5GPT with existing works

Approach #Issues identified/
test-cases #Tested #Confirmed

5GPT 47 14 9
Bookworm Game [11] 23 23 10
5GReasoner [6] 11 - -
Hermes [12] (5G NAS) 11 - -

A large-scale comparison with the existing works in vulner-
ability detection is difficult due to their different scope. Some
works [6], [11], [12], like ours, focus on protocol-level issues,
while others attempt to uncover device- or vendor-specific
implementation issues. In Table X we have quantitatively
compared our findings with other works of similar scope. It
should be mentioned here that 5GReasoner and Hermes use
formal verification methods instead of hardware or simulation
testing. Moreover, Bookworm Game [11] employs two threat
models, only one of which are related to our work. The
other threat model focuses on UE-specific issues, which has
uncovered further 32 vulnerabilities.

We have also compared our black-box approach against a
white-box model, MobileLLaMA [40], which is an instruc-
tion fine-tuned variant of the LLaMA-2 13B model and is
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TABLE XI: Comparison between MobileLLaMA (fine-tuned on LLaMA-2 13B) and 5GPT

Criteria MobileLLaMA 5GPT
Common
Findings

Both models point out missing validation of key EAP parameters (e.g., AT KDF, SNN checks, message integrity), unauthorized access issues,
ngKSI mishandling, replay/duplicate attacks, and timer-related DoS risks.

Unique
Findings

MobileLLaMA identifies some unique protocol field missing
vulnerabilities such as “AUSF not including AT RESULT IND”
and “UE not verifying network name inside AT KDF INPUT.”

5GPT identifies deeper process-level and adversary-driven vulnerabilities,
such as “Unauthorized EAP Server Change during EAP-TTLS authentica-
tion”, “Accepting service from rogue networks without proper authentica-
tion”, “DoS via Timer T3560 expiry handling in burst message attacks”,
and “EAP method filtering failure (e.g., other than AKA’ and TLS)”.

Specificity
&
Technical
Depth

MobileLLaMA’s findings are often phrased from high level.
Some are superficial without enough details (e.g., “No protection
against replay attacks”, “Possible unauthorized access”). The
more technical ones, like “AMF does not set the authenticator
retransmission timer, leading to potential delays or failures” also
do not specify which message types or timers are involved, why
it matters, and whether it can be exploited in real-world scenario.

5GPT findings are highly specific with strong technical reasoning. For
example, “Lack of Timer Validation: If an AUTH REJECT message is
received without integrity protection, the UE starts timer T3247 with a
random value. This could be abused by an attacker sending numerous
unprotected AUTH REJECT messages, causing the UE to initiate multiple
timers and leading to resource exhaustion” specifies the timer, identifies
the vulnerable message, explains the attacker’s strategy (flooding UE with
fake messages), and shows the security impact (resource exhaustion).

Precision
& Confi-
dence

Almost similar vulnerabilities found across iterations, suggesting
high confidence. However, due to lack of details and ambiguity,
more test-cases would have to be filtered out before testing.

There are occasional outliers that would not appear across iterations.
However, due to sufficient details, strong reasoning, and clear exploitation
paths present, less filtering is required.

Testability MobileLLaMA generated test-cases are often surface-level,
without details about how to trigger a vulnerability or which
protocol fields are involved (“replay attack”, “lack of timers“).
Attacker actions are often unclear (“AUSF sends incorrect
parameters” – hard to understand what message or which
parameters) and expected outcomes are vague (“potential delays
or failures”). Some test-cases did not follow the provided format.

5GPT generated test-cases specify exact message types and parameters to
manipulate (e.g., “EAP-Request with AT KDF ̸= 1”, “AUTHENTICA-
TION REQUEST with malicious ngKSI”), describe clear attacker actions
(e.g., “modifying AT KDF”, “forging ngKSI”), define concrete expected
outcomes (e.g., UE rejects, AMF blocking unsupported EAP methods),
and require less guesswork and minimal interpretation overall.

specifically optimized for telecom and 5G-related tasks. For
a focused comparison, we tested both models on EAP-based
primary authentication and key agreement procedure. Due to
LLaMA 2’s limited context window of 4096 tokens, we were
unable to input the entire section at once and had to split it
page by page. We compared both models’ outputs in terms of
coverage, specificity, technical detail, and testability. Table XI
provides a detailed comparison. In summary, 5GPT consis-
tently identified system-level procedural issues and attacker-
driven vulnerabilities, while MobileLLaMA focused more
on protocol field omissions and validation issues. However,
MobileLLaMA often failed to recognize logical flaws and
real-world exploits involving message flow manipulation or
adversarial behavior. These results demonstrate that GPT-
4, when guided by domain-specific prompt engineering, has
better context understanding and reasoning capabilities than
white-box models in the task of identifying vulnerabilities
from natural language specifications.

VI. DISCUSSION

A. Validation and Novelty of Our Approach

Among the 47 potential vulnerabilities we have identified,
20 have already been documented in existing research. This
alignment with known vulnerabilities confirms the credibility
of our methodology. In addition, the ability to uncover new
vulnerabilities demonstrates the innovative potential of our
model. By detecting 27 issues that have not yet been addressed
in the literature, our approach not only contributes to the
advancement of knowledge in 5G security, but also highlights
its capability to push the boundaries of current research.

B. Limitations

Simulator limitations: Simulators like Open5GS, UERAN-
SIM, and 5GReplay are designed primarily for conformance

testing, which limits the scope of creating adversarial scenar-
ios. For example, despite security measures, an attacker can
potentially carry out a replay attack by exploiting network
latencies, congestion, and handover delays, which cannot
be simulated in 5GReplay. Moreover, certain vulnerabilities
like timing attacks, downgrading security protocols during
handovers, or injecting maliciously crafted messages to exploit
improper validation, are difficult to test in a simulation envi-
ronment, but can be verified using a proper hardware setup.

Risk of losing context due to segmentation: When using
the 3GPP 5G specification, we segmented it into smaller sec-
tions for a more focused analysis. This can make it difficult to
capture vulnerabilities that arise during interaction of multiple
procedures described in different sections.

Untested vulnerabilities: Due to time constraints as well
as simulator limitations, we were unable to test all potential
vulnerabilities identified by our approach.

Manual filtering: The filtering process requires manual
review for a reliable evaluation of GPT-4’s performance in
this domain, which may limit scalability. This process can be
automated by using pre-trained language models fine-tuned on
labeled datasets containing examples of valid and invalid test
cases. This was beyond the scope of our current study.

VII. CONCLUSION & FUTURE WORK

In this work, we introduced an innovative approach for de-
tecting vulnerabilities in 5G networks by combining GPT-4’s
zero-shot capabilities with domain-specific insights through
prompt engineering. We identified a total of 47 potential
vulnerabilities, with 27 new discoveries and 20 previously re-
ported issues, thereby establishing both credibility and novelty
of our method. Our analysis shows that zero-shot prompting is
effective in identifying high-level procedural and logical flaws,
whereas context-aware strategies are more suitable for detect-
ing complex protocol violations, cross-procedural attacks, and
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adversarial exploits. Our qualitative evaluation highlights that
black-box LLMs, guided by prompt engineering, are more ef-
fective than white-box fine-tuning in identifying vulnerabilities
from natural language protocol documents. In future work we
plan on expanding real-world validation through hardware test-
ing, automating the filtering process, and exploring mitigation
strategies, thus further advancing the practical applicability of
our findings in securing next-generation networks.
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